Información básica.
Modelo NO.
RTO
Métodos de tratamiento
Combustión
Fuentes de pullución
Control de la contaminación atmosférica
Marca
RUIMA
Origen
China
Código SA
84213990
Descripción del producto
Oxidador térmico regenerativo (RTO);
La técnica de oxidación más utilizada actualmente para
Dependiendo del volumen de aire y de la eficacia de purificación requerida, la RTO se suministra con 2, 3, 5 ó 10 cámaras;
Ventajas
Amplia gama de COV a tratar
Bajo coste de mantenimiento
Alta eficiencia térmica
No genera residuos
Adaptable a pequeños, medianos y grandes caudales de aire
Recuperación de calor mediante bypass si la concentración de COV supera el punto autotérmico
Autotérmico y recuperación de calor:;
Eficiencia térmica > 95%
Punto autotérmico a 1.;2 - 1.;7 mgC/Nm3
Caudal de aire de 2,; 000 a 200,; 000m3/h
Alta destrucción de COV
La eficacia de purificación es normalmente superior al 99%;
Dirección: No 3 North Xihu (West Lake) Dis. Road, Xihu (West Lake) Dis., HangZhou, ZheJiang , China
Tipo de empresa: Fabricante/Fábrica
Campo de actividad: Maquinaria de fabricación y procesamiento, Servicios
Certificación del sistema de gestión: ISO 14001, ISO 9001, OHSAS/ OHSMS 18001, QHSE
Productos principales: Secador, Extrusora, Calentador, Extrusora de doble husillo, Equipo electroquímico de protección contra la corrosión, Tornillo, Mezcladora, Granuladora, Compresor, Granuladora
Presentación de la empresa: El Inst. de Res. de Chem. Mach del Ministerio de Industria Química se fundó en ZheJiang en 1958, y se trasladó a HangZhou en 1965.
El Inst. de Res. de Automatización del Ministerio de Industria Química se fundó en HangZhou en 1963.
En 1997, el Inst. de Res. de Maq. Mach del Ministerio de Industria Química y el Inst. Res. de Automatización del Ministerio de Industria Química se unieron para convertirse en el Inst. Res. de Maquinaria Química y Automatización del Ministerio de Industria Química.
En 2000, el Instituto de Maquinaria Química y Automatización del Ministerio de Industria Química completó su transformación en empresa y se registró como Instituto CHINAMFG de Maquinaria Química y Automatización.
El Instituto Tianhua cuenta con las siguientes instituciones subordinadas:
Centro de Supervisión e Inspección de la Calidad de los Equipos Químicos de HangZhou, provincia de ZheJiang
Instituto de Equipamiento de HangZhou en HangZhou, provincia de ZheJiang;
Instituto de Automatización de HangZhou, provincia de ZheJiang;
HangZhou Ruima Chemical Machinery Co Ltd en HangZhou, provincia de ZheJiang;
HangZhou Ruide Drying Technology Co Ltd en HangZhou, provincia de ZheJiang;
HangZhouLantai Plastics Machinery Co Ltd en HangZhou, provincia de ZheJiang;
ZheJiang Airuike Automation Technology Co Ltd en HangZhou, provincia de ZheJiang;
El Instituto Unido de HangZhou de Maquinaria Química y Automatización y el Instituto Unido de HangZhou de Hornos de la Industria Petroquímica fueron fundados por el Instituto CHINAMFG y Sinopec.
El Instituto Tianhua tiene una superficie ocupada de 80 000 m2 y un activo total de 1 yuan (RMB). El valor de producción anual es de 1 yuan (RMB).
El Instituto Tianhua cuenta con unos 916 empleados, de los cuales 75% son personal profesional. Entre ellos hay 23 catedráticos, 249 ingenieros superiores y 226 ingenieros. 29 catedráticos e ingenieros superiores disfrutan de una subvención especial nacional, a 5 personas se les ha concedido el título de Especialista Joven y de Mediana Edad con Destacada Contribución a la R. P. China.
¿En qué se diferencian los oxidadores térmicos regenerativos de los catalíticos?
Los oxidantes térmicos regenerativos (RTO) y los oxidantes catalíticos son tecnologías eficaces para controlar las emisiones atmosféricas de los procesos industriales. Aunque tienen una finalidad similar, existen diferencias significativas en su funcionamiento, eficiencia y aplicabilidad.
He aquí una comparación entre los RTO y los oxidantes catalíticos:
Oxidadores térmicos regenerativos (RTO) | Oxidantes catalíticos |
---|---|
Operación: | Operación: |
Los RTO consiguen controlar las emisiones mediante la combustión a alta temperatura sin el uso de un catalizador. Se basan en el proceso de oxidación térmica, en el que los COV y otros contaminantes de los gases de escape se oxidan a altas temperaturas (normalmente entre 1.400 ºF y 1.600 ºF) en presencia de un exceso de oxígeno. | Los oxidantes catalíticos utilizan un catalizador (normalmente un metal precioso, como el platino, el paladio o el rodio) para facilitar la oxidación de COV y otros contaminantes a temperaturas más bajas en comparación con los RTO. El catalizador reduce la energía de activación necesaria para la reacción de oxidación, lo que permite que ésta se produzca a temperaturas más bajas (entre 600°F y 900°F). |
Eficiencia: | Eficiencia: |
Las RTO son conocidas por su alta eficiencia térmica. Utilizan un sistema de intercambiador de calor regenerativo que recupera y transfiere el calor de los gases de escape tratados a los gases entrantes sin tratar, reduciendo significativamente el consumo de combustible. Este mecanismo de recuperación de calor hace que las RTO sean eficientes desde el punto de vista energético. | Los incineradores catalíticos suelen ser más eficientes energéticamente que los RTO porque funcionan a temperaturas más bajas. El catalizador facilita la reacción de oxidación, permitiendo que se produzca a temperaturas más bajas, lo que reduce la necesidad de energía para calentar los gases de escape. |
Aplicabilidad: | Aplicabilidad: |
Las RTO son especialmente adecuadas para aplicaciones en las que las concentraciones de contaminantes son elevadas o en las que existe una gran variación en los caudales o las concentraciones de contaminantes. Se utilizan habitualmente para el control de compuestos orgánicos volátiles (COV) y contaminantes atmosféricos peligrosos (HAP) en diversas industrias, como las de fabricación de productos químicos, impresión, revestimiento y productos farmacéuticos. | Los oxidantes catalíticos suelen preferirse en aplicaciones en las que las concentraciones de contaminantes son relativamente bajas y relativamente constantes. Son eficaces para el control de COV en aplicaciones como la pintura de automóviles, la impresión y el procesado de alimentos, donde las concentraciones de COV pueden ser más bajas y constantes. |
Limitaciones: | Limitaciones: |
Los RTO tienen costes de capital más elevados que los oxidantes catalíticos debido a su complejo diseño y al sistema de recuperación de calor. También tienen una temperatura de funcionamiento más elevada, lo que puede limitar su aplicabilidad en determinados procesos o requerir sistemas adicionales de recuperación de calor. | Los oxidantes catalíticos pueden ser sensibles a venenos o contaminantes en los gases de escape que pueden desactivar o degradar el catalizador con el tiempo. Ciertos compuestos, como el azufre, las siliconas o los compuestos halogenados, pueden envenenar potencialmente el catalizador, reduciendo su eficacia y requiriendo la sustitución o regeneración periódica del catalizador. |
A la hora de elegir entre una RTO y un oxidante catalítico, es esencial tener en cuenta los requisitos específicos de la aplicación, incluidas las concentraciones de contaminantes, los caudales, los requisitos de temperatura y las consideraciones de coste. Consultar a profesionales de la ingeniería medioambiental o a fabricantes de equipos puede ayudar a determinar la tecnología más adecuada para una necesidad concreta de control de emisiones.
¿Son adecuados los oxidadores térmicos regenerativos para controlar las emisiones de las imprentas?
Sí, los oxidadores térmicos regenerativos (RTO) pueden ser adecuados para controlar las emisiones de las prensas de impresión. Las prensas de impresión pueden emitir compuestos orgánicos volátiles (COV) y otros contaminantes atmosféricos durante el proceso de impresión, que deben controlarse adecuadamente para cumplir la normativa medioambiental y garantizar la calidad del aire. He aquí algunos puntos clave sobre la idoneidad de los RTO para controlar las emisiones de las prensas de impresión:
- Control de emisiones: Las RTO están diseñadas para alcanzar altas eficiencias de destrucción de COV y contaminantes atmosféricos peligrosos (HAP). Estos contaminantes se oxidan dentro de la RTO a altas temperaturas, normalmente por encima de una eficiencia de 95%, convirtiéndolos en dióxido de carbono (CO2) y vapor de agua. Los RTO controlan y reducen eficazmente las emisiones de las imprentas.
- Compatibilidad: Las RTO pueden integrarse en el sistema de escape de las imprentas, capturando y tratando las emisiones antes de que se liberen a la atmósfera. La RTO suele estar conectada a la chimenea de escape de la imprenta, lo que permite que el aire cargado de COV pase por el oxidante para su tratamiento.
- Caudales elevados: Las prensas de impresión pueden generar importantes volúmenes de escape debido al proceso de impresión. Las RTO están diseñadas para manejar caudales elevados y pueden adaptarse a los volúmenes de escape variables de las imprentas. Esto garantiza un tratamiento eficaz de las emisiones incluso durante los periodos de máxima producción.
- Capacidad térmica: Las RTO tienen la capacidad térmica necesaria para gestionar las variaciones de temperatura en las emisiones de las imprentas. El proceso de impresión puede dar lugar a temperaturas de escape variables, y las RTO están diseñadas para funcionar eficazmente dentro de una amplia gama de condiciones de temperatura.
- Eficiencia energética: Las RTO incorporan sistemas de intercambio de calor que permiten recuperar y reutilizar la energía térmica. Los intercambiadores de calor dentro de la RTO capturan el calor de los gases de escape salientes y lo transfieren a la corriente de aire o gas de proceso entrante. Este proceso de recuperación de calor mejora la eficiencia energética global del sistema y reduce la necesidad de consumo adicional de combustible.
- Cumplimiento de la normativa: Las emisiones de las imprentas están sujetas a requisitos normativos de calidad del aire y control de emisiones. Las RTO son capaces de lograr las eficiencias de destrucción necesarias y pueden ayudar a los operadores de imprentas a cumplir la normativa medioambiental. El uso de RTO demuestra un compromiso con las prácticas sostenibles y la gestión responsable de las emisiones atmosféricas.
Es importante señalar que el diseño y la configuración específicos de la RTO, así como las características de las emisiones de la imprenta, deben tenerse en cuenta a la hora de implantar una RTO para una aplicación de imprenta. La consulta a ingenieros experimentados o a fabricantes de RTO puede proporcionar información valiosa sobre el tamaño, la integración y los requisitos de rendimiento adecuados para controlar las emisiones de las imprentas.
En resumen, los RTO son una tecnología adecuada para controlar las emisiones de las prensas de impresión, ya que proporcionan una alta eficiencia de destrucción, compatibilidad con los sistemas de escape de las prensas de impresión, manejo de altos caudales y variaciones de temperatura, eficiencia energética gracias a la recuperación de calor y cumplimiento de la normativa medioambiental.
¿Qué es un oxidador térmico regenerativo?
Un oxidador térmico regenerativo (RTO) es un dispositivo avanzado de control de la contaminación atmosférica utilizado en aplicaciones industriales para eliminar compuestos orgánicos volátiles (COV), contaminantes atmosféricos peligrosos (HAP) y otros contaminantes transportados por el aire de los gases de escape. Funciona utilizando altas temperaturas para descomponer u oxidar térmicamente los contaminantes, convirtiéndolos en subproductos menos nocivos.
¿Cómo funciona un oxidador térmico regenerativo?
Una RTO consta de varios componentes clave y funciona mediante un proceso cíclico:
1. Plenum de entrada: Los gases de escape que contienen contaminantes entran en la RTO a través del plenum de admisión.
2. Lechos intercambiadores de calor: La RTO contiene múltiples lechos intercambiadores de calor rellenos de medios de almacenamiento de calor, normalmente materiales cerámicos o empaquetaduras estructuradas. Los lechos intercambiadores de calor están dispuestos por pares.
3. Válvulas reguladoras de caudal: Las válvulas reguladoras de caudal dirigen el flujo de aire y controlan la dirección de los gases de escape a través de la RTO.
4. Cámara de combustión: Los gases de escape, ahora dirigidos a la cámara de combustión, se calientan a una temperatura elevada, normalmente entre 760 °C (1400 °F) y 870 °C (1600 °F). Este rango de temperatura garantiza una oxidación térmica eficaz de los contaminantes.
5. Destrucción de COV: La elevada temperatura de la cámara de combustión hace que los COV y otros contaminantes reaccionen con el oxígeno, lo que provoca su descomposición térmica u oxidación. Este proceso descompone los contaminantes en vapor de agua, dióxido de carbono y otros gases inocuos.
6. Recuperación de calor: Los gases calientes y depurados que salen de la cámara de combustión pasan por el plenum de salida y fluyen a través de los lechos intercambiadores de calor que se encuentran en la fase opuesta de funcionamiento. Los medios de almacenamiento de calor de los lechos absorben el calor de los gases salientes, lo que precalienta los gases de escape entrantes.
7. Conmutación de ciclos: Después de un intervalo de tiempo específico, las válvulas de control de flujo cambian la dirección del flujo de aire, permitiendo que los lechos del intercambiador de calor que estaban precalentando los gases entrantes reciban ahora los gases calientes de la cámara de combustión. A continuación, el ciclo se repite, garantizando un funcionamiento continuo y eficaz.
Ventajas de los oxidadores térmicos regenerativos:
Las OTR ofrecen varias ventajas en el control de la contaminación atmosférica industrial:
1. Alta eficacia: Los RTO pueden alcanzar altas eficiencias de destrucción, normalmente superiores a 95%, eliminando eficazmente una amplia gama de contaminantes.
2. Recuperación de energía: El mecanismo de recuperación de calor de las RTO permite un importante ahorro de energía. El precalentamiento de los gases entrantes reduce el consumo de combustible necesario para la combustión, lo que hace que las RTO sean energéticamente eficientes.
3. Rentabilidad: Aunque la inversión de capital inicial para una RTO puede ser significativa, el ahorro de costes operativos a largo plazo gracias a la recuperación de energía y la alta eficiencia de destrucción la convierten en una solución rentable a lo largo de la vida útil del sistema.
4. Cumplimiento de la normativa medioambiental: Las RTO están diseñadas para cumplir las estrictas normativas sobre emisiones y ayudar a las industrias a cumplir las normas y permisos de calidad del aire.
5. Versatilidad: Las RTO pueden gestionar una amplia gama de volúmenes de gases de escape de procesos y concentraciones de contaminantes, lo que las hace adecuadas para diversas aplicaciones industriales.
En general, los oxidadores térmicos regenerativos son dispositivos de control de la contaminación atmosférica muy eficientes y eficaces que se utilizan ampliamente en las industrias para minimizar las emisiones y garantizar el cumplimiento de la normativa medioambiental.
editor by CX 2024-01-30