Basic Info.

Model NO.

RTO

Processing Methods

Combustion

Pullution Sources

Air Pollution Control

Trademark

RUIMA

Origin

China

HS Code

84213990

Product Description

Regenerative Thermal Oxidizer (RTO);
The most widely used oxidation technique nowadays for
VOC emission reduction,; suitable for treating a wide range of solvents and processes.; Depending on air volume and required purification efficiency,; a RTO comes with 2,; 3,; 5 or 10 chambers.;

Advantages
Wide range of VOC’s to be treated
Low maintenance cost
High Thermal Efficiency
Does not generate any waste
Adaptable for small,; medium and large air flows
Heat Recovery via bypass if VOCs concentration exceed the auto-thermal point

Auto-thermal and Heat Recovery:;
Thermal Efficiency > 95%
Auto-thermal point at 1.;2 – 1.;7 mgC/Nm3
Air flow range from 2,; 000 up to 200,; 000m3/h

High VOC’s destruction
The purification efficiency is normally in excess of 99%

Address: No 3 North Xihu (West Lake) Dis. Road, Xihu (West Lake) Dis., HangZhou, ZheJiang , China

Business Type: Manufacturer/Factory

Business Range: Manufacturing & Processing Machinery, Service

Management System Certification: ISO 14001, ISO 9001, OHSAS/ OHSMS 18001, QHSE

Main Products: Dryer, Extruder, Heater, Twin Screw Extruder, Electrochemical Corrosion Protection Equ, Screw, Mixer, Pelletizing Machine, Compressor, Pelletizer

Company Introduction: The Res. Inst of Chem. Mach of the Ministry of Chemical Industry was founded in ZheJiang in 1958, and moved to HangZhou in 1965.

The Res. Inst of Automation of the Ministry of Chemical Industry was founded in HangZhou in 1963.

In 1997, the Res. Inst. Of Chem. Mach of the Ministry of Chemical Industry and the Res. Inst. Of Automation of the Ministry of Chemical Industry were combined to become the Res. Inst of Chemical Machinery and Automation of the Ministry of Chemical Industry.

In 2000, the Res. Inst of Chemical Machinery and Automation of the Ministry of ChemicalIndustry completed its transformation to enterprise and registered as CHINAMFG Instituteof Chemical Machinery and Automation.

Tianhua Institute has the following subordinated institutions:

Supervision and Inspection Center of the Quality of Chemical Equipments in HangZhou, ZheJiang Province

HangZhou Equipment Institute in HangZhou, ZheJiang Province;

Automation Institute in HangZhou, ZheJiang Province;

HangZhou Ruima Chemical Machinery Co Ltd in HangZhou, ZheJiang Province;

HangZhou Ruide Drying Technology Co Ltd in HangZhou, ZheJiang Province;

HangZhouLantai Plastics Machinery Co Ltd in HangZhou, ZheJiang Province;

ZheJiang Airuike Automation Technology Co Ltd in HangZhou, ZheJiang Province;

The HangZhou United Institute of Chemical Machinery and automation and the HangZhou United Institute of Petrochemical Industry Furnaces were founded by CHINAMFG Institute and the Sinopec.

Tianhua Institute has an occupation area of 80 000m2 and a total asset of 1 Yuan (RMB). The annual output value is 1 Yuan (RMB).

Tianhua Institute has about 916 employees, 75% of them are professional personnel. Among them are 23 professors, 249senior engineers, 226 engineers. 29 professors and senior engineers enjoy national special subsidy, On 5 people the title of Middle-aged and Young Specialist with Outstanding Contribution to the P. R. China are conferred

regenerative thermal oxidizers

How do regenerative thermal oxidizers compare to catalytic oxidizers?

Regenerative thermal oxidizers (RTOs) and catalytic oxidizers are both effective technologies used for controlling air emissions from industrial processes. While they serve a similar purpose, there are significant differences in their operation, efficiency, and applicability.

Here is a comparison between RTOs and catalytic oxidizers:

Regenerative Thermal Oxidizers (RTOs)Catalytic Oxidizers
Operation:Operation:
RTOs achieve emission control through high-temperature combustion without the use of a catalyst. They rely on the thermal oxidation process, where VOCs and other pollutants in the exhaust gas are oxidized at high temperatures (typically between 1,400°F and 1,600°F) in the presence of excess oxygen.Catalytic oxidizers utilize a catalyst (usually a precious metal, such as platinum, palladium, or rhodium) to facilitate the oxidation of VOCs and other pollutants at lower temperatures compared to RTOs. The catalyst lowers the activation energy required for the oxidation reaction, enabling it to occur at lower temperatures (around 600°F to 900°F).
Efficiency:Efficiency:
RTOs are known for their high thermal efficiency. They utilize a regenerative heat exchanger system that recovers and transfers heat from the treated exhaust gases to the incoming untreated gases, significantly reducing fuel consumption. This heat recovery mechanism makes RTOs energy-efficient.Catalytic oxidizers are generally more energy-efficient than RTOs because they operate at lower temperatures. The catalyst facilitates the oxidation reaction, allowing it to occur at lower temperatures, which reduces the energy requirement for heating the exhaust gas.
Applicability:Applicability:
RTOs are particularly suitable for applications where the pollutant concentrations are high, or where there is a wide variation in flow rates or pollutant concentrations. They are commonly used for the control of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) in various industries, including chemical manufacturing, printing, coating, and pharmaceuticals.Catalytic oxidizers are often preferred in applications where the pollutant concentrations are relatively low and relatively constant. They are effective for VOC control in applications such as automotive painting, printing, and food processing, where the VOC concentrations can be lower and more consistent.
Limitations:Limitations:
RTOs have higher capital costs compared to catalytic oxidizers due to their complex design and heat recovery system. They also have a higher operating temperature, which may limit their applicability in certain processes or require additional heat recovery systems.Catalytic oxidizers can be sensitive to poisons or contaminants in the exhaust gas that can deactivate or degrade the catalyst over time. Certain compounds, such as sulfur, silicones, or halogenated compounds, can potentially poison the catalyst, reducing its effectiveness and requiring periodic catalyst replacement or regeneration.

When selecting between an RTO and a catalytic oxidizer, it is essential to consider the specific requirements of the application, including pollutant concentrations, flow rates, temperature requirements, and cost considerations. Consulting with environmental engineering professionals or equipment manufacturers can help determine the most suitable technology for a particular emission control need.

regenerative thermal oxidizers

Are regenerative thermal oxidizers suitable for controlling emissions from printing presses?

Yes, regenerative thermal oxidizers (RTOs) can be suitable for controlling emissions from printing presses. Printing presses can emit volatile organic compounds (VOCs) and other air pollutants during the printing process, which need to be properly controlled to comply with environmental regulations and ensure air quality. Here are some key points regarding the suitability of RTOs for controlling emissions from printing presses:

  • Emission Control: RTOs are designed to achieve high destruction efficiencies for VOCs and hazardous air pollutants (HAPs). These pollutants are oxidized within the RTO at high temperatures, typically above 95% efficiency, converting them into carbon dioxide (CO2) and water vapor. RTOs effectively control and reduce emissions from printing presses.
  • Compatibility: RTOs can be integrated into the exhaust system of printing presses, capturing and treating the emissions before they are released into the atmosphere. The RTO is typically connected to the exhaust stack of the printing press, allowing the VOC-laden air to pass through the oxidizer for treatment.
  • High Flow Rates: Printing presses can generate significant exhaust volumes due to the printing process. RTOs are designed to handle high flow rates and can accommodate the varying exhaust volumes of printing presses. This ensures effective treatment of emissions even during peak production periods.
  • Thermal Capacity: RTOs have the thermal capacity to handle the temperature variations in printing press emissions. The printing process can result in varying exhaust temperatures, and RTOs are designed to operate effectively within a wide range of temperature conditions.
  • Energy Efficiency: RTOs incorporate heat exchange systems that allow for the recovery and reuse of thermal energy. The heat exchangers within the RTO capture the heat from the outgoing exhaust gases and transfer it to the incoming process air or gas stream. This heat recovery process improves the overall energy efficiency of the system and reduces the need for additional fuel consumption.
  • Compliance with Regulations: Printing press emissions are subject to regulatory requirements for air quality and emissions control. RTOs are capable of achieving the necessary destruction efficiencies and can help printing press operators comply with environmental regulations. The use of RTOs demonstrates a commitment to sustainable practices and responsible management of air emissions.

It is important to note that the specific design and configuration of the RTO, as well as the characteristics of the printing press emissions, should be considered when implementing an RTO for a printing press application. Consulting with experienced engineers or RTO manufacturers can provide valuable insights into the proper sizing, integration, and performance requirements for controlling emissions from printing presses.

In summary, RTOs are a suitable technology for controlling emissions from printing presses, providing high destruction efficiencies, compatibility with printing press exhaust systems, handling high flow rates and temperature variations, energy efficiency through heat recovery, and compliance with environmental regulations.

regenerative thermal oxidizers

What is a regenerative thermal oxidizer?

A regenerative thermal oxidizer (RTO) is an advanced air pollution control device used in industrial applications to remove volatile organic compounds (VOCs), hazardous air pollutants (HAPs), and other airborne contaminants from exhaust gases. It operates by using high temperatures to thermally decompose or oxidize the pollutants, converting them into less harmful byproducts.

How does a regenerative thermal oxidizer work?

An RTO consists of several key components and operates through a cyclical process:

1. Inlet Plenum: The exhaust gases containing pollutants enter the RTO through the inlet plenum.

2. Heat Exchanger Beds: The RTO contains multiple heat exchanger beds filled with heat storage media, typically ceramic materials or structured packing. The heat exchanger beds are arranged in pairs.

3. Flow Control Valves: Flow control valves direct the airflow and control the direction of the exhaust gases through the RTO.

4. Combustion Chamber: The exhaust gases, now directed into the combustion chamber, are heated to a high temperature, typically between 1400°F (760°C) and 1600°F (870°C). This temperature range ensures effective thermal oxidation of the pollutants.

5. VOC Destruction: The high temperature in the combustion chamber causes the VOCs and other contaminants to react with oxygen, resulting in their thermal decomposition or oxidation. This process breaks down the pollutants into water vapor, carbon dioxide, and other harmless gases.

6. Heat Recovery: The hot, purified gases leaving the combustion chamber pass through the outlet plenum and flow through the heat exchanger beds that are in the opposite phase of operation. The heat storage media in the beds absorb heat from the outgoing gases, which preheats the incoming exhaust gases.

7. Cycle Switching: After a specific time interval, the flow control valves switch the airflow direction, allowing the heat exchanger beds that were preheating the incoming gases to now receive the hot gases from the combustion chamber. The cycle then repeats, ensuring continuous and efficient operation.

Advantages of regenerative thermal oxidizers:

RTOs offer several advantages in industrial air pollution control:

1. High Efficiency: RTOs can achieve high destruction efficiencies, typically above 95%, effectively removing a wide range of pollutants.

2. Energy Recovery: The heat recovery mechanism in RTOs allows for significant energy savings. The preheating of incoming gases reduces the fuel consumption required for combustion, making RTOs energy-efficient.

3. Cost-effectiveness: Although the initial capital investment for an RTO can be significant, the long-term operational cost savings through energy recovery and high destruction efficiencies make it a cost-effective solution over the lifespan of the system.

4. Environmental Compliance: RTOs are designed to meet stringent emissions regulations and help industries comply with air quality standards and permits.

5. Versatility: RTOs can handle a wide range of process exhaust volumes and pollutant concentrations, making them suitable for various industrial applications.

Overall, regenerative thermal oxidizers are highly efficient and effective air pollution control devices widely used in industries to minimize emissions and ensure environmental compliance.

China Best Sales Regenerative Thermal Oxidizer (RTO)
editor by CX 2024-01-30

bg_BGBG