Basic Info.

Model NO.








Medium Material

Metal Fiber

Dust Collecting Method



1 M / h.;
Performance characteristics
The air volume of the treatment is from 2nm3 / h

Concentration ≥ 1000mg / m3

Model Air volume
Burner(thousand Kcal);
LC-RTO -50 5000 5280*1790*3910 250
LC-RTO -100 10000 6150*2380*4030 550
LC-RTO -150 15000 7050*2830*4310 750
LC-RTO -200 20000 7980*3150*4610 1000
LC-RTO -300 30000 10650*4260*4950 1350
LC-RTO -400 40000 12560*4720*5460 2000
LC-RTO -500 50000 14200*5260*5860 2000


Customer Question & Answer


If you have any questions,; please leave your valuable comments

Address: 316, No. 331, Chengnan Road, Lancheng Street, HangZhou City, ZheJiang Province

Business Type: Manufacturer/Factory

Business Range: Industrial Equipment & Components

Main Products: Waste Incineration Power Generation, Waste Incineration, Renergy Power Generation, Waste Incineration Power Plant, Refuse Incinerator, Energy

Company Introduction: HangZhou Lancheng Environmental Protection Technology Co., Ltd., located in HangZhou City, HangZhou City, ZheJiang Province, is a high-tech enterprise integrating scientific research, design, production and sales. The company strives for innovation with scientific research, survival with quality and development with reputation. With its professional level and mature technology in the field of environmental protection, it is rising rapidly. Customer satisfaction with products is our constant pursuit.

With a registered capital of 20 million yuan, the company has more than 2000 modern production bases in HangZhou Hong Kong Industrial Zone, HangZhou City, HangZhou City, ZheJiang Province. The company′s first-class environmental protection treatment designers have designed targeted treatment schemes from the aspects of system rationality, technological innovation and input-output economy for various complex working conditions, so as to make the emission indicators meet the national emission standards.

The company′s main products are: 1. Organic waste gas; Activated carbon, RTO, RCO, zeolite runner, dry filter box, etc. 2. Dust; Electrostatic precipitator, pulse bag filter and other equipment. 3. Pharmaceutical equipment; Drying equipment, mixing equipment, granulation equipment, crushing equipment. 4. Hot DIP galvanized wire. 5. Industrial wastewater treatment equipment, etc.

Our equipment has been successfully used in chemical industry, baking, coating, electroplating, waste incineration, printing, catering, municipal and other industries. At present, the company can formulate a perfect treatment scheme according to the current situation of enterprise sewage discharge, and use the existing patented technology to develop the most suitable products. We will provide you with the best quality solutions with the most advanced technology and the most sincere attitude.

The company always takes “carving carefully and creating high-quality products” as the enterprise purpose, and always takes “growing into the strongest environmental protection enterprise in Xihu (West Lake) Dis.” as the enterprise goal. In recent years, with the increasing attention of the state to environmental protection, “managing the atmosphere, beautifying the environment and benefiting mankind” has become our long-term task. In response to the call of the national “energy conservation and emission reduction” policy, blue city environmental protection company has made due contributions to revitalizing China′s environmental protection and building a harmonious society, and continues to strive to create a bluer sky and a better environment for us!

regenerative thermal oxidizers

How do regenerative thermal oxidizers compare to catalytic oxidizers?

Regenerative thermal oxidizers (RTOs) and catalytic oxidizers are both effective technologies used for controlling air emissions from industrial processes. While they serve a similar purpose, there are significant differences in their operation, efficiency, and applicability.

Here is a comparison between RTOs and catalytic oxidizers:

Regenerative Thermal Oxidizers (RTOs) Catalytic Oxidizers
Operation: Operation:
RTOs achieve emission control through high-temperature combustion without the use of a catalyst. They rely on the thermal oxidation process, where VOCs and other pollutants in the exhaust gas are oxidized at high temperatures (typically between 1,400°F and 1,600°F) in the presence of excess oxygen. Catalytic oxidizers utilize a catalyst (usually a precious metal, such as platinum, palladium, or rhodium) to facilitate the oxidation of VOCs and other pollutants at lower temperatures compared to RTOs. The catalyst lowers the activation energy required for the oxidation reaction, enabling it to occur at lower temperatures (around 600°F to 900°F).
Efficiency: Efficiency:
RTOs are known for their high thermal efficiency. They utilize a regenerative heat exchanger system that recovers and transfers heat from the treated exhaust gases to the incoming untreated gases, significantly reducing fuel consumption. This heat recovery mechanism makes RTOs energy-efficient. Catalytic oxidizers are generally more energy-efficient than RTOs because they operate at lower temperatures. The catalyst facilitates the oxidation reaction, allowing it to occur at lower temperatures, which reduces the energy requirement for heating the exhaust gas.
Applicability: Applicability:
RTOs are particularly suitable for applications where the pollutant concentrations are high, or where there is a wide variation in flow rates or pollutant concentrations. They are commonly used for the control of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) in various industries, including chemical manufacturing, printing, coating, and pharmaceuticals. Catalytic oxidizers are often preferred in applications where the pollutant concentrations are relatively low and relatively constant. They are effective for VOC control in applications such as automotive painting, printing, and food processing, where the VOC concentrations can be lower and more consistent.
Limitations: Limitations:
RTOs have higher capital costs compared to catalytic oxidizers due to their complex design and heat recovery system. They also have a higher operating temperature, which may limit their applicability in certain processes or require additional heat recovery systems. Catalytic oxidizers can be sensitive to poisons or contaminants in the exhaust gas that can deactivate or degrade the catalyst over time. Certain compounds, such as sulfur, silicones, or halogenated compounds, can potentially poison the catalyst, reducing its effectiveness and requiring periodic catalyst replacement or regeneration.

When selecting between an RTO and a catalytic oxidizer, it is essential to consider the specific requirements of the application, including pollutant concentrations, flow rates, temperature requirements, and cost considerations. Consulting with environmental engineering professionals or equipment manufacturers can help determine the most suitable technology for a particular emission control need.

regenerative thermal oxidizers

Are regenerative thermal oxidizers suitable for controlling emissions from printing presses?

Yes, regenerative thermal oxidizers (RTOs) can be suitable for controlling emissions from printing presses. Printing presses can emit volatile organic compounds (VOCs) and other air pollutants during the printing process, which need to be properly controlled to comply with environmental regulations and ensure air quality. Here are some key points regarding the suitability of RTOs for controlling emissions from printing presses:

  • Emission Control: RTOs are designed to achieve high destruction efficiencies for VOCs and hazardous air pollutants (HAPs). These pollutants are oxidized within the RTO at high temperatures, typically above 95% efficiency, converting them into carbon dioxide (CO2) and water vapor. RTOs effectively control and reduce emissions from printing presses.
  • Compatibility: RTOs can be integrated into the exhaust system of printing presses, capturing and treating the emissions before they are released into the atmosphere. The RTO is typically connected to the exhaust stack of the printing press, allowing the VOC-laden air to pass through the oxidizer for treatment.
  • High Flow Rates: Printing presses can generate significant exhaust volumes due to the printing process. RTOs are designed to handle high flow rates and can accommodate the varying exhaust volumes of printing presses. This ensures effective treatment of emissions even during peak production periods.
  • Thermal Capacity: RTOs have the thermal capacity to handle the temperature variations in printing press emissions. The printing process can result in varying exhaust temperatures, and RTOs are designed to operate effectively within a wide range of temperature conditions.
  • Energy Efficiency: RTOs incorporate heat exchange systems that allow for the recovery and reuse of thermal energy. The heat exchangers within the RTO capture the heat from the outgoing exhaust gases and transfer it to the incoming process air or gas stream. This heat recovery process improves the overall energy efficiency of the system and reduces the need for additional fuel consumption.
  • Compliance with Regulations: Printing press emissions are subject to regulatory requirements for air quality and emissions control. RTOs are capable of achieving the necessary destruction efficiencies and can help printing press operators comply with environmental regulations. The use of RTOs demonstrates a commitment to sustainable practices and responsible management of air emissions.

It is important to note that the specific design and configuration of the RTO, as well as the characteristics of the printing press emissions, should be considered when implementing an RTO for a printing press application. Consulting with experienced engineers or RTO manufacturers can provide valuable insights into the proper sizing, integration, and performance requirements for controlling emissions from printing presses.

In summary, RTOs are a suitable technology for controlling emissions from printing presses, providing high destruction efficiencies, compatibility with printing press exhaust systems, handling high flow rates and temperature variations, energy efficiency through heat recovery, and compliance with environmental regulations.

regenerative thermal oxidizers

How efficient are regenerative thermal oxidizers in destroying volatile organic compounds (VOCs)?

Regenerative thermal oxidizers (RTOs) are highly efficient in destroying volatile organic compounds (VOCs) emitted from industrial processes. Here are the reasons why RTOs are considered efficient in VOC destruction:

1. High Destruction Efficiency: RTOs are known for their high destruction efficiency, typically exceeding 99%. They effectively oxidize VOCs present in the industrial exhaust streams, converting them into less harmful byproducts, such as carbon dioxide and water vapor. This high destruction efficiency ensures that the majority of VOCs are eliminated, resulting in cleaner emissions and compliance with environmental regulations.

2. Residence Time: RTOs provide a sufficiently long residence time for the combustion of VOCs. In the RTO chamber, the VOC-laden air is directed through a ceramic media bed, which acts as a heat sink. The VOCs are heated to the combustion temperature and react with the available oxygen, leading to their destruction. The design of RTOs ensures that the VOCs have ample time to undergo complete combustion before being released into the atmosphere.

3. Temperature Control: RTOs maintain the combustion temperature within a specific range to optimize VOC destruction. The operating temperature is carefully controlled based on factors such as the type of VOCs, their concentration, and the specific requirements of the industrial process. By controlling the temperature, RTOs ensure that the VOCs are efficiently oxidized, maximizing destruction efficiency while minimizing the formation of harmful byproducts, such as nitrogen oxides (NOx).

4. Heat Recovery: RTOs incorporate a regenerative heat recovery system, which enhances their overall energy efficiency. The system captures and preheats the incoming process air by utilizing the heat energy from the outgoing exhaust stream. This heat recovery mechanism minimizes the amount of external fuel required to sustain the combustion temperature, resulting in energy savings and cost-effectiveness. The heat recovery also helps maintain the high destruction efficiency of VOCs by providing a consistent and optimized operating temperature.

5. Catalyst Integration: In some cases, RTOs can be equipped with catalyst beds to further enhance VOC destruction efficiency. Catalysts can accelerate the oxidation process and lower the required operating temperature, improving the overall efficiency of VOC destruction. Catalyst integration is particularly beneficial for processes with lower VOC concentrations or when specific VOCs require lower temperatures for effective oxidation.

6. Compliance with Regulations: The high destruction efficiency of RTOs ensures compliance with environmental regulations governing VOC emissions. Many industrial sectors are subject to stringent air quality standards and emission limits. RTOs provide an effective solution for meeting these requirements by reliably and efficiently destroying VOCs, reducing their impact on air quality and public health.

In summary, regenerative thermal oxidizers (RTOs) are highly efficient in destroying volatile organic compounds (VOCs). Their high destruction efficiency, residence time, temperature control, heat recovery capabilities, optional catalyst integration, and compliance with regulations make RTOs a preferred choice for industries seeking effective and sustainable solutions for VOC abatement.

editor by CX 2023-08-31