Basic Info.

Model NO.

Amazing TO

Type

Incinerator

Low Cost

100

Energy Saving

100

High Efficiency

100

Trademark

Bjamazing

Transport Package

Overseas

Specification

123

Origin

China

HS Code

345

Product Description

Thermal oxidizer
TO (Thermal oxidizer) direct cracking is a common device for VOC treating. It has the feature of high efficiency and low investment cost
When CHINAMFG grain is often generated during VOC air cracking, DTO is a better choice for VOC treating
 

Technical parameter
Treating capacity 8000
~
100000 m3/h
Treatment efficiency up to 98%
Pressure flutuation Relatively small
Occupying area Relatively large
investment Relatively less

RTO, RTO, thermal oxidizer, regenerative thermal oxidizer
Our company’s RTO(Abbreviation of Regenerative Thermal Oxidizer), is a high-efficiency treatment equipment for organic waste gas. Comparing to catalytic combustion or direct combustion, it has character of high thermal efficiency, low operation cost, coping with big amount low concentration waste gas. If concentration is slightly high, it is possible for waste heat recovery for dramatically reduction of production and operation cost.
It is applied to various industries, such as surface spraying and coating, automobile, electronics, pharmaceuticals, petrochemical and rubber production; It can cope with waste gas content, such as benzene, methylbenzene, dimethylbenzene, etc. 

Incinerator, Incinerator, Incinerator, RTO, RTO, thermal oxidizer, regenerative thermal oxidizer, waste gas treatment, VOC treatment, waste gas processing, VOC processing, incinerator, heat recycle, heat exchanger

Address: 8 floor, E1, Pinwei building, Dishengxi road, Yizhuang, ZheJiang , China

Business Type: Manufacturer/Factory, Trading Company

Business Range: Electrical & Electronics, Industrial Equipment & Components, Manufacturing & Processing Machinery, Metallurgy, Mineral & Energy

Management System Certification: ISO 9001, ISO 14001

Main Products: Rto, Color Coating Line, Galvanizing Line, Air Knife, Spares for Processing Line, Coater, Independent Equipments, Sink Roll, Revamping Project, Blower

Company Introduction: ZheJiang Amazing Science & Technology Co., Ltd is a thriving Hi-tech company, located in ZheJiang Economic and Technological Development Area(BDA). Adhering to the concept of Realistic, Innovative, Focused and Efficient, our company mainly serve the waste gas treatment (VOCs) Industry and metallurgical equipment of China and even whole world. We have advanced technology and rich experience in VOCs waste gas treatment project, the reference of which has been successfully applied to the industry of coating, rubber, electronic, printing, etc. We also have years of technology accumulation in the research and manufacturing of flat steel processing line, and possess nearly 100 of application example.

Our company focus on the research, design, manufacturing, installation and commissioning of VOCs organic waste gas treatment system and the revamping and updating project for energy saving and environmental protection of flat steel processing line. We can provide customers the complete solutions for environmental protection, energy saving, product quality improvement and other aspects.

We are also engaged in various spares and independent equipment for color coating line, galvanizing line, pickling line, like roller, coupler, heat exchanger, recuperator, air knife, blower, welder, tension leveler, skin pass, expansion joint, shear, jointer, stitcher, burner, radiant tube, gear motor, reducer, etc.

regenerative thermal oxidizers

Can a regenerative thermal oxidizer be retrofitted into an existing facility?

Yes, regenerative thermal oxidizers (RTOs) can be retrofitted into existing facilities under certain conditions. Retrofitting an RTO involves integrating the system into the existing infrastructure and process flow of the facility to control emissions from industrial processes. However, the feasibility of retrofitting an RTO depends on several factors related to the facility and the specific requirements of the application.

Here are some considerations for retrofitting an RTO into an existing facility:

  • Space Availability: RTOs typically require a significant amount of physical space for installation. It’s important to assess whether the facility has adequate space to accommodate the size and layout requirements of the RTO system. This includes considering the space needed for the RTO unit itself, associated ductwork, auxiliary systems, and access for maintenance.
  • Process Integration: Retrofitting an RTO involves integrating the system into the existing industrial process. This integration may require modifications to the process flow, such as rerouting ductwork, adding or modifying exhaust points, or coordinating with existing pollution control equipment. The compatibility of the RTO with the existing process and the ability to seamlessly integrate the system should be evaluated.
  • Auxiliary Systems: In addition to the RTO unit, auxiliary systems may be required for effective operation and compliance. These systems can include pre-treatment equipment such as scrubbers or filters, heat recovery units, monitoring and control systems, and stack emissions monitoring equipment. The availability of space and compatibility with existing infrastructure should be considered for accommodating these auxiliary systems.
  • Utility Requirements: RTOs have specific utility requirements, such as the need for natural gas or electricity for heating the combustion chamber and operating the control system. The availability and capacity of utilities at the existing facility should be assessed to ensure they can meet the demands of the RTO system.
  • Structural Considerations: The structural integrity of the facility should be evaluated to determine if it can support the additional weight of the RTO and associated equipment. This assessment may involve consulting with structural engineers and considering any necessary reinforcements or modifications.
  • Regulatory Compliance: Retrofitting an RTO may require obtaining permits and complying with environmental regulations. It is essential to assess the applicable regulations and ensure that the retrofit meets the necessary compliance requirements for emissions control.

It is important to consult with experienced engineering firms or RTO manufacturers who can assess the specific requirements and constraints of the facility. They can provide detailed evaluations, feasibility studies, and design recommendations for retrofitting an RTO into an existing facility. Their expertise can help ensure that the retrofit is successful, cost-effective, and compliant with environmental regulations.

regenerative thermal oxidizers

How do regenerative thermal oxidizers handle variations in pollutant composition?

Regenerative thermal oxidizers (RTOs) are designed to handle variations in pollutant composition effectively. RTOs are commonly used for treating volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) emitted from various industrial processes. Here are some key points regarding how RTOs handle variations in pollutant composition:

  • Thermal Oxidation Process: RTOs utilize a thermal oxidation process to eliminate pollutants. The process involves raising the temperature of the exhaust gas to a level where the pollutants react with oxygen and are oxidized to carbon dioxide (CO2) and water vapor. This high-temperature oxidation process is effective in treating a wide range of pollutants, regardless of their specific composition.
  • Wide Range of Pollutant Compatibility: RTOs are designed to handle a broad spectrum of pollutants, including VOCs and HAPs with varying chemical compositions. The high operating temperatures in the RTO, typically between 1400°F to 1600°F (760°C to 870°C), ensure that a wide range of organic compounds can be effectively oxidized, regardless of their molecular structure or chemical makeup.
  • Residence Time and Dwell Time: RTOs provide sufficient residence time and dwell time for the exhaust gas within the oxidizer. The exhaust gas is directed through a heat exchange system, where it passes through ceramic media beds or heat exchange media. These media beds absorb the heat from the high-temperature combustion chamber and transfer it to the incoming exhaust gas. The extended residence time and dwell time ensure that even complex or less reactive pollutants have enough contact time with the elevated temperature to be effectively oxidized.
  • Heat Recovery: RTOs incorporate heat recovery systems that maximize thermal efficiency. The heat exchangers within the RTO capture and transfer heat from the outgoing exhaust gas to the incoming process stream. This heat exchange process helps maintain the high operating temperatures required for effective pollutant destruction while minimizing the energy consumption of the system. The ability to recover and reuse heat also contributes to the RTO’s ability to handle variations in pollutant composition.
  • Advanced Control Systems: RTOs employ advanced control systems to monitor and optimize the oxidation process. These control systems continuously monitor parameters such as temperature, flow rates, and pollutant concentrations. By adjusting the operating conditions in response to variations in pollutant composition, the control systems ensure optimal performance and maintain high destruction efficiencies.

In summary, RTOs handle variations in pollutant composition by utilizing a thermal oxidation process, accommodating a wide range of pollutants, providing sufficient residence time and dwell time, incorporating heat recovery systems, and employing advanced control systems. These features allow RTOs to effectively treat emissions with different pollutant compositions, ensuring high destruction efficiencies and compliance with environmental regulations.

regenerative thermal oxidizers

Can a regenerative thermal oxidizer handle high-volume exhaust gases?

Yes, a regenerative thermal oxidizer (RTO) is capable of handling high-volume exhaust gases emitted from industrial processes. RTOs are designed to handle a wide range of flow rates, including high-volume exhaust streams. Here are the reasons why RTOs are suitable for handling high-volume exhaust gases:

1. Scalability: RTOs are highly scalable and can be designed to accommodate varying exhaust gas volumes. The size and capacity of an RTO can be customized to match the specific requirements of the industrial process. This scalability allows RTOs to handle high-volume exhaust gases effectively.

2. Modular Design: RTOs often feature a modular design that allows multiple units to be installed in parallel. This modular configuration enables the treatment of large exhaust gas volumes by operating multiple RTO units simultaneously. The modular approach provides flexibility and ensures efficient handling of high-volume exhaust gases.

3. Large Heat Exchange Surface: RTOs incorporate structured ceramic media beds that provide a large heat exchange surface area. The media beds efficiently transfer heat between the incoming and outgoing gas streams, facilitating the oxidation of VOCs. The large heat exchange surface area enables RTOs to effectively handle high-volume exhaust gases while maintaining the required combustion temperature.

4. Heat Recovery: RTOs are known for their energy-efficient operation due to their heat recovery capabilities. The heat recovery system within an RTO captures and preheats the incoming process air by utilizing the heat energy from the outgoing exhaust stream. This heat recovery mechanism minimizes the energy consumption required to maintain the combustion temperature, making RTOs well-suited for handling high-volume exhaust gases without significantly increasing energy costs.

5. Effective Flow Distribution: RTOs are engineered to ensure proper flow distribution within the system. The design includes appropriate ductwork, valves, and dampers to evenly distribute the exhaust gases across the ceramic media beds. Effective flow distribution prevents preferential flow paths and ensures that all exhaust gases receive sufficient residence time for complete VOC destruction, even in high-volume exhaust gas applications.

6. Advanced Control Systems: Modern RTOs are equipped with advanced control systems that optimize the performance of the system. These control systems monitor and regulate various parameters, including temperature, airflow, and valve sequencing. The control systems adapt to the fluctuating exhaust gas volumes and maintain the required combustion temperature, ensuring efficient handling of high-volume exhaust gases.

In summary, regenerative thermal oxidizers (RTOs) are capable of effectively handling high-volume exhaust gases. Their scalability, modular design, large heat exchange surface, heat recovery capabilities, effective flow distribution, and advanced control systems make RTOs well-suited for industrial processes that generate substantial exhaust gas volumes.

China Good quality Recuperative Thermal Oxidizer
editor by CX 2023-10-21

en_USEN