Basic Info.
Model NO.
lc-fszl&rto
Certification
ISO
Installation
Method
Horizontal
Operation
Type
Manually
Medium Material
Metal Fiber
Dust Collecting Method
Dry
Type
Organic Waste Gas Treatment Equipment
Saving
1 M / h.;
Performance characteristics
The air volume of the treatment is from 2nm3 / h
Concentration ≥ 1000mg / m3
Customer Question & Answer
If you have any questions,; please leave your valuable comments
Address: 316, No. 331, Chengnan Road, Lancheng Street, HangZhou City, ZheJiang Province
Business Type: Manufacturer/Factory
Business Range: Industrial Equipment & Components
Main Products: Waste Incineration Power Generation, Waste Incineration, Renergy Power Generation, Waste Incineration Power Plant, Refuse Incinerator, Energy
Company Introduction: HangZhou Lancheng Environmental Protection Technology Co., Ltd., located in HangZhou City, HangZhou City, ZheJiang Province, is a high-tech enterprise integrating scientific research, design, production and sales. The company strives for innovation with scientific research, survival with quality and development with reputation. With its professional level and mature technology in the field of environmental protection, it is rising rapidly. Customer satisfaction with products is our constant pursuit.
With a registered capital of 20 million yuan, the company has more than 2000 modern production bases in HangZhou Hong Kong Industrial Zone, HangZhou City, HangZhou City, ZheJiang Province. The company′s first-class environmental protection treatment designers have designed targeted treatment schemes from the aspects of system rationality, technological innovation and input-output economy for various complex working conditions, so as to make the emission indicators meet the national emission standards.
The company′s main products are: 1. Organic waste gas; Activated carbon, RTO, RCO, zeolite runner, dry filter box, etc. 2. Dust; Electrostatic precipitator, pulse bag filter and other equipment. 3. Pharmaceutical equipment; Drying equipment, mixing equipment, granulation equipment, crushing equipment. 4. Hot DIP galvanized wire. 5. Industrial wastewater treatment equipment, etc.
Our equipment has been successfully used in chemical industry, baking, coating, electroplating, waste incineration, printing, catering, municipal and other industries. At present, the company can formulate a perfect treatment scheme according to the current situation of enterprise sewage discharge, and use the existing patented technology to develop the most suitable products. We will provide you with the best quality solutions with the most advanced technology and the most sincere attitude.
The company always takes “carving carefully and creating high-quality products” as the enterprise purpose, and always takes “growing into the strongest environmental protection enterprise in Xihu (West Lake) Dis.” as the enterprise goal. In recent years, with the increasing attention of the state to environmental protection, “managing the atmosphere, beautifying the environment and benefiting mankind” has become our long-term task. In response to the call of the national “energy conservation and emission reduction” policy, blue city environmental protection company has made due contributions to revitalizing China′s environmental protection and building a harmonious society, and continues to strive to create a bluer sky and a better environment for us!
Can regenerative thermal oxidizers handle variable pollutant concentrations?
Regenerative thermal oxidizers (RTOs) are designed to handle variable pollutant concentrations effectively. They are capable of accommodating fluctuations in pollutant concentrations without significant adverse effects on their performance or efficiency. The ability of RTOs to handle variable pollutant concentrations is one of the advantages that make them suitable for a wide range of industrial applications.
Here are some key points to consider regarding the capability of RTOs to handle variable pollutant concentrations:
- High Destruction Efficiency: RTOs are known for their high destruction efficiency, which refers to their ability to effectively destroy or oxidize the pollutants present in the exhaust gases. The combustion chamber within the RTO is designed to maintain a sufficiently high temperature to ensure complete oxidation of the pollutants, regardless of their concentration.
- Retention Time: RTOs are designed with a sufficient residence or retention time within the combustion chamber. This allows the exhaust gases to spend enough time in the high-temperature zone, ensuring that even pollutants with varying concentrations are adequately treated and oxidized.
- Heat Recovery: The heat recovery system in an RTO, typically using ceramic media beds or heat exchangers, plays a crucial role in handling variable pollutant concentrations. The heat recovery system helps maintain the required temperature and provides thermal energy to sustain the combustion process, even during periods of low pollutant concentrations.
- Dynamic Operation: RTOs are designed to operate dynamically, meaning they can adjust their operating parameters to accommodate changes in pollutant concentrations. They can modulate variables such as the flow rates of the exhaust gases and incoming untreated gases, the temperature setpoints, and the switching frequency of the beds to optimize performance under varying pollutant loads.
- Monitoring and Controls: RTOs are equipped with advanced monitoring and control systems that continuously monitor pollutant concentrations, temperature, and other relevant parameters. These systems enable real-time adjustments and optimization of the RTO operation to ensure effective treatment of variable pollutant concentrations.
While RTOs can handle variable pollutant concentrations, it’s important to note that extreme or highly fluctuating pollutant concentrations may require additional considerations. In some cases, pre-treatment methods such as dilution or conditioning of the exhaust gases may be employed to ensure optimal performance of the RTO.
Overall, RTOs are versatile and reliable systems that can effectively handle variable pollutant concentrations, providing efficient and consistent treatment of industrial emissions.
Can regenerative thermal oxidizers be used for treating emissions from wood processing operations?
Yes, regenerative thermal oxidizers (RTOs) can be used effectively for treating emissions from wood processing operations. Wood processing operations, such as sawmills, veneer production, and wood product manufacturing, can generate various pollutants, including volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). Here are some key points regarding the use of RTOs for treating emissions from wood processing operations:
- Emission Control: RTOs are designed to achieve high destruction efficiencies for VOCs and HAPs. These pollutants are oxidized within the RTO at high temperatures, typically above 95% efficiency, converting them into carbon dioxide (CO2) and water vapor. This ensures effective control and reduction of emissions from wood processing operations.
- Process Compatibility: RTOs can be integrated into the exhaust systems of various wood processing operations, capturing and treating the emissions before they are released into the atmosphere. The RTO is typically connected to the process equipment or exhaust stack, allowing the VOC-laden air to pass through the oxidizer for treatment.
- Flexibility: RTOs offer flexibility in handling a wide range of operating conditions and pollutants. Wood processing operations can vary in terms of flow rates, temperature, and composition of emissions. RTOs are designed to accommodate these variations and provide effective treatment even under fluctuating conditions.
- Particulate Removal: Wood processing operations may also generate particulate matter, such as wood dust or sawdust. While RTOs are primarily designed for treating gaseous pollutants, they can be complemented with additional particulate control devices, such as cyclones or fabric filters, to address particulate emissions and ensure compliance with air quality standards.
- Heat Recovery: RTOs incorporate heat exchange systems that allow for the recovery and reuse of thermal energy. The heat exchangers within the RTO capture the heat from the outgoing exhaust gases and transfer it to the incoming process air or gas stream. This heat recovery process improves the overall energy efficiency of the system and reduces the need for additional fuel consumption.
- Compliance with Regulations: Wood processing operations are subject to regulatory requirements for air quality and emissions control. RTOs are capable of achieving the necessary destruction efficiencies and can help wood processors comply with environmental regulations. The use of RTOs demonstrates a commitment to sustainable practices and responsible management of air emissions.
It is important to note that the specific design and configuration of the RTO, as well as the characteristics of the wood processing emissions, should be considered when implementing an RTO for a specific application. Consulting with experienced engineers or RTO manufacturers can provide valuable insights into the proper sizing, integration, and performance requirements for treating emissions from wood processing operations.
In summary, RTOs are a suitable and effective technology for treating emissions from wood processing operations, providing high destruction efficiencies, compatibility with various processes, flexibility in handling operating conditions, potential for particulate removal, heat recovery, and compliance with environmental regulations.
How does a regenerative thermal oxidizer work?
A regenerative thermal oxidizer (RTO) is an advanced air pollution control device that operates through a cyclical process to remove volatile organic compounds (VOCs), hazardous air pollutants (HAPs), and other airborne contaminants from exhaust gases. Here’s a detailed explanation of how an RTO works:
1. Inlet Plenum: The exhaust gases containing pollutants enter the RTO through the inlet plenum.
2. Heat Exchanger Beds: The RTO contains multiple heat exchanger beds filled with heat storage media, typically ceramic materials or structured packing. The heat exchanger beds are arranged in pairs.
3. Flow Control Valves: Flow control valves direct the airflow and control the direction of the exhaust gases through the RTO.
4. Combustion Chamber: The exhaust gases, now directed into the combustion chamber, are heated to a high temperature, typically between 1400°F (760°C) and 1600°F (870°C). This temperature range ensures effective thermal oxidation of the pollutants.
5. VOC Destruction: The high temperature in the combustion chamber causes the VOCs and other contaminants to react with oxygen, resulting in their thermal decomposition or oxidation. This process breaks down the pollutants into water vapor, carbon dioxide, and other harmless gases.
6. Heat Recovery: The hot, purified gases leaving the combustion chamber pass through the outlet plenum and flow through the heat exchanger beds that are in the opposite phase of operation. The heat storage media in the beds absorb heat from the outgoing gases, which preheats the incoming exhaust gases.
7. Cycle Switching: After a specific time interval, the flow control valves switch the airflow direction, allowing the heat exchanger beds that were preheating the incoming gases to now receive the hot gases from the combustion chamber. The cycle then repeats, ensuring continuous and efficient operation.
Advantages of a regenerative thermal oxidizer:
RTOs offer several advantages in industrial air pollution control:
1. High Efficiency: RTOs can achieve high destruction efficiencies, typically above 95%, effectively removing a wide range of pollutants.
2. Energy Recovery: The heat recovery mechanism in RTOs allows for significant energy savings. The preheating of incoming gases reduces the fuel consumption required for combustion, making RTOs energy-efficient.
3. Cost-effectiveness: Although the initial capital investment for an RTO can be significant, the long-term operational cost savings through energy recovery and high destruction efficiencies make it a cost-effective solution over the lifespan of the system.
4. Environmental Compliance: RTOs are designed to meet stringent emissions regulations and help industries comply with air quality standards and permits.
5. Versatility: RTOs can handle a wide range of process exhaust volumes and pollutant concentrations, making them suitable for various industrial applications.
Overall, a regenerative thermal oxidizer operates by utilizing heat recovery, high-temperature combustion, and cyclical flow control to effectively oxidize pollutants and achieve high destruction efficiencies while minimizing energy consumption.
editor by CX 2023-08-30