Informações básicas.

Modelo NO.

LC-RTO

Certification

ISO

Installation
Method

Horizontal

Operation
Tipo

Manually

Medium Material

Metal Fiber

Dust Collecting Method

Dry

Saving

1 M / h.;
 
Performance characteristics
The air volume of the treatment is from 2nm3 / h

Concentration ≥ 1000mg / m3

ModelAir volume
(m3/h);
Tamanho
(mm);
Burner(thousand Kcal);
LC-RTO -5050005280*1790*3910250
LC-RTO -100100006150*2380*4030550
LC-RTO -150150007050*2830*4310750
LC-RTO -200200007980*3150*46101000
LC-RTO -3003000010650*4260*49501350
LC-RTO -4004000012560*4720*54602000
LC-RTO -5005000014200*5260*58602000

FAQ:;
 

Customer Question & Answer

 

If you have any questions,; please leave your valuable comments

Address: 316, No. 331, Chengnan Road, Lancheng Street, HangZhou City, ZheJiang Province

Business Type: Manufacturer/Factory

Business Range: Industrial Equipment & Components

Main Products: Waste Incineration Power Generation, Waste Incineration, Renergy Power Generation, Waste Incineration Power Plant, Refuse Incinerator, Energy

Company Introduction: HangZhou Lancheng Environmental Protection Technology Co., Ltd., located in HangZhou City, HangZhou City, ZheJiang Province, is a high-tech enterprise integrating scientific research, design, production and sales. The company strives for innovation with scientific research, survival with quality and development with reputation. With its professional level and mature technology in the field of environmental protection, it is rising rapidly. Customer satisfaction with products is our constant pursuit.

With a registered capital of 20 million yuan, the company has more than 2000 modern production bases in HangZhou Hong Kong Industrial Zone, HangZhou City, HangZhou City, ZheJiang Province. The company′s first-class environmental protection treatment designers have designed targeted treatment schemes from the aspects of system rationality, technological innovation and input-output economy for various complex working conditions, so as to make the emission indicators meet the national emission standards.

The company′s main products are: 1. Organic waste gas; Activated carbon, RTO, RCO, zeolite runner, dry filter box, etc. 2. Dust; Electrostatic precipitator, pulse bag filter and other equipment. 3. Pharmaceutical equipment; Drying equipment, mixing equipment, granulation equipment, crushing equipment. 4. Hot DIP galvanized wire. 5. Industrial wastewater treatment equipment, etc.

Our equipment has been successfully used in chemical industry, baking, coating, electroplating, waste incineration, printing, catering, municipal and other industries. At present, the company can formulate a perfect treatment scheme according to the current situation of enterprise sewage discharge, and use the existing patented technology to develop the most suitable products. We will provide you with the best quality solutions with the most advanced technology and the most sincere attitude.

The company always takes “carving carefully and creating high-quality products” as the enterprise purpose, and always takes “growing into the strongest environmental protection enterprise in Xihu (West Lake) Dis.” as the enterprise goal. In recent years, with the increasing attention of the state to environmental protection, “managing the atmosphere, beautifying the environment and benefiting mankind” has become our long-term task. In response to the call of the national “energy conservation and emission reduction” policy, blue city environmental protection company has made due contributions to revitalizing China′s environmental protection and building a harmonious society, and continues to strive to create a bluer sky and a better environment for us!

oxidadores térmicos regenerativos

Are regenerative thermal oxidizers suitable for controlling particulate matter emissions?

Regenerative thermal oxidizers (RTOs) are primarily designed for the destruction of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). While RTOs are highly effective in treating gaseous pollutants, they are not specifically designed for controlling particulate matter emissions.

Here are some key points to consider regarding the suitability of RTOs for controlling particulate matter emissions:

  • Particulate Matter (PM) Removal Mechanism: RTOs primarily operate based on the thermal oxidation of pollutants. They rely on high temperatures to break down and destroy gaseous pollutants, but they do not have a dedicated mechanism for capturing and removing particulate matter. The design of RTOs does not incorporate features such as filters or electrostatic precipitators that are commonly used for effective particulate matter control.
  • Limited Particulate Matter Destruction: While RTOs can provide some incidental removal of fine particulate matter through mechanisms like thermal decomposition and agglomeration, the removal efficiency for particulate matter is generally low compared to dedicated particulate control devices. The focus of RTOs is primarily on the destruction of gaseous pollutants rather than the capture and removal of particulates.
  • Supplementary Particulate Control: In certain cases, supplementary particulate control devices may be integrated with RTOs to address particulate matter emissions. These devices, such as bag filters or electrostatic precipitators, can be installed downstream of the RTO to capture and remove particulates. This combination of an RTO with a separate particulate control device can help achieve comprehensive air pollution control for both gaseous pollutants and particulate matter.
  • Consideration of Particulate Characteristics: When evaluating the suitability of RTOs for a specific application involving particulate matter emissions, it is crucial to consider the characteristics of the particulates, such as size, composition, and concentration. RTOs may be more effective in controlling certain types of coarse particulates compared to fine or ultrafine particulate matter.
  • Alternative Technologies: For industries with significant particulate matter emissions, other air pollution control technologies specifically designed for particulate removal, such as fabric filters (baghouses), electrostatic precipitators, or wet scrubbers, may be more suitable and efficient.

In summary, while regenerative thermal oxidizers are highly effective for the destruction of gaseous pollutants, they are not specifically designed for controlling particulate matter emissions. If particulate matter control is a significant concern, supplementary particulate control devices or alternative technologies should be considered to ensure comprehensive air pollution control.

oxidadores térmicos regenerativos

Can regenerative thermal oxidizers handle corrosive exhaust gases?

Regenerative thermal oxidizers (RTOs) can be designed to handle corrosive exhaust gases effectively. However, the ability of an RTO to handle corrosive gases depends on several factors, including the choice of construction materials, operating conditions, and the specific corrosive nature of the exhaust gases. Here are some key points regarding the handling of corrosive exhaust gases in RTOs:

  • Material Selection: The selection of appropriate construction materials is crucial when dealing with corrosive gases. RTOs can be constructed using materials that offer high resistance to corrosion, such as stainless steel, corrosion-resistant alloys (e.g., Hastelloy, Inconel), or coated materials. The choice of materials depends on the specific corrosive compounds present in the exhaust gases and their concentrations.
  • Corrosion-Resistant Coatings: In addition to selecting corrosion-resistant materials, applying protective coatings can enhance the resistance of the RTO components to corrosive gases. Coatings such as ceramic coatings, epoxy coatings, or acid-resistant paints can provide an extra layer of protection against corrosion.
  • Temperature Control: Maintaining appropriate operating temperatures in the RTO can help mitigate the corrosive effects of the exhaust gases. Higher temperatures can promote the decomposition of corrosive compounds, reducing their corrosive potential. Additionally, operating at higher temperatures can enhance the self-cleaning effect and prevent the accumulation of corrosive deposits on the surfaces.
  • Gas Conditioning: Prior to entering the RTO, the exhaust gases can undergo gas conditioning processes to reduce their corrosive nature. This may involve pre-treatment methods such as scrubbing or neutralization to remove or neutralize corrosive compounds and reduce their concentration.
  • Monitoring and Maintenance: Regular monitoring of the RTO performance and periodic maintenance are essential to ensure the effective handling of corrosive exhaust gases. Monitoring systems can track variables such as temperature, pressure, and gas composition to detect any deviations that may indicate corrosion-related issues. Proper maintenance, including cleaning and inspection of the components, helps identify and address any corrosion concerns in a timely manner.

It is important to note that the corrosiveness of exhaust gases can vary significantly depending on the specific industrial process and the pollutants involved. Therefore, when designing an RTO for handling corrosive gases, it is advisable to consult with experienced engineers or RTO manufacturers who can provide guidance on the appropriate design considerations and material selection.

By employing suitable materials, coatings, temperature control, gas conditioning, and maintenance practices, RTOs can effectively handle corrosive exhaust gases while ensuring their long-term performance and durability.

oxidadores térmicos regenerativos

Qual é a vida útil de um oxidador térmico regenerativo?

A vida útil de um oxidador térmico regenerativo (RTO) pode variar dependendo de vários fatores, inclusive a qualidade do equipamento, a manutenção adequada, as condições operacionais e os avanços tecnológicos. Em geral, um RTO bem projetado e com manutenção adequada pode ter uma vida útil que varia de 15 a 25 anos ou mais.

Aqui estão alguns fatores que podem influenciar a vida útil de uma RTO:

  • Qualidade da construção: Os RTOs construídos com materiais de alta qualidade, como ligas resistentes à corrosão e revestimentos refratários, tendem a ter uma vida útil mais longa. A construção robusta garante durabilidade e resistência às condições operacionais adversas encontradas com frequência nos processos industriais.
  • Práticas de manutenção: A manutenção regular e proativa é fundamental para maximizar a vida útil de uma RTO. Isso inclui inspeções periódicas, limpeza e substituição de componentes, como válvulas, amortecedores e leitos de mídia de cerâmica, e monitoramento dos parâmetros operacionais. A manutenção adequada ajuda a evitar falhas prematuras no equipamento e garante o desempenho ideal.
  • Condições de operação: As condições de operação da RTO, como temperatura, composição do gás e carga de partículas, podem afetar sua vida útil. Operar o RTO dentro de seus parâmetros de projeto e evitar tensões térmicas ou químicas excessivas pode contribuir para uma vida útil mais longa.
  • Avanços tecnológicos: Com o tempo, os avanços tecnológicos podem levar à introdução de componentes mais eficientes e duráveis ou a melhorias no projeto geral das RTOs. A atualização ou o retrofit de uma RTO antiga com tecnologias mais novas pode estender sua vida útil e melhorar seu desempenho.
  • Fatores ambientais: Fatores ambientais, como a exposição a gases corrosivos, alta umidade ou climas rigorosos, podem afetar a vida útil de uma RTO. Considerações de projeto e medidas de proteção adequadas, como revestimentos resistentes à corrosão ou isolamento, podem atenuar esses efeitos e prolongar a vida útil do equipamento.

É importante observar que a vida útil mencionada é uma estimativa geral e pode variar dependendo das circunstâncias específicas. As inspeções regulares, a manutenção e a adesão às diretrizes do fabricante são essenciais para garantir a longevidade e a operação confiável de uma RTO.

editor by CX 2023-09-01

pt_BRPT