Yandex Metrika

Basic Info.

Model NO.

Amazing RTO

Type

Incinerator

High Efficiency

100

Energy Saving

100

Low Maintenance

100

Easy Operation

100

Trademark

Bjamazing

Transport Package

Overseas

Specification

111

Origin

China

HS Code

2221111

Product Description

RTO

Regenerative Thermal Oxidizer

Compared with traditional catalytic combustion,; direct thermal oxidizer,; RTO has the merits of high heating efficiency,; low operation cost,; and the ability to treat large flux low concentration waste gas.; When VOCs concentration is high,; secondary heat recycle can be realized,; which will greatly reduce the operation cost.; Because RTO can preheat the waste gas by levels through ceramic heat accumulator,; which could make the waste gas to be completely heated and cracked with no dead corner(treatment efficiency>99%);,;which reduce the NOX in the Exhausting gas,; if the VOC density >1500mg/Nm3,; when the waste gas reach cracking area,; it has been heated up to cracking temperature by heat accumulator,; the burner will be closed under this condition.;

RTO can be devided into chamber type and rotary type according to difference operation mode.; Rotary type RTO has advantages in system pressure,; temperature stability,; investment amount,; etc

RTO types  EfficiencyPressure change
(mmAq);
Size(max);Treatment volume  
 
Treatment efficiency Heat recycle efficiency  
Rotary type RTO99 %97 %0-4small
(1 time);
50000Nm3/h  
Three chamber type RTO99 %97 %  0-10Large
(1.;5times);
100000Nm3/h
Two chamber type RTO95 %95 %0-20middle
(1.;2times);
100000Nm3/h  

Regenerative Thermal Oxidizer,; Regenerative Thermal Oxidizer,; Regenerative Thermal Oxidizer,;  Thermal Oxidizer,; Thermal Oxidizer,; Thermal Oxidizer,; oxidizer,; oxidizer,; oxidizer,; incinerator,; incinerator,; incinerator,; waste gas treatment,; waste gas treatment,; waste gas treatment,; VOC treatment,; VOC treatment,; VOC treatment,; RTO,; RTO,; RTO,; Rotary RTO,; Rotary RTO,; Rotary RTO,; Chamber RTO,; Chamber RTO,; Chamber RTO

Address: 8 floor, E1, Pinwei building, Dishengxi road, Yizhuang, ZheJiang , China

Business Type: Manufacturer/Factory, Trading Company

Business Range: Electrical & Electronics, Industrial Equipment & Components, Manufacturing & Processing Machinery, Metallurgy, Mineral & Energy

Management System Certification: ISO 9001, ISO 14001

Main Products: Rto, Color Coating Line, Galvanizing Line, Air Knife, Spares for Processing Line, Coater, Independent Equipments, Sink Roll, Revamping Project, Blower

Company Introduction: ZheJiang Amazing Science & Technology Co., Ltd is a thriving Hi-tech company, located in ZheJiang Economic and Technological Development Area(BDA). Adhering to the concept of Realistic, Innovative, Focused and Efficient, our company mainly serve the waste gas treatment (VOCs) Industry and metallurgical equipment of China and even whole world. We have advanced technology and rich experience in VOCs waste gas treatment project, the reference of which has been successfully applied to the industry of coating, rubber, electronic, printing, etc. We also have years of technology accumulation in the research and manufacturing of flat steel processing line, and possess nearly 100 of application example.

Our company focus on the research, design, manufacturing, installation and commissioning of VOCs organic waste gas treatment system and the revamping and updating project for energy saving and environmental protection of flat steel processing line. We can provide customers the complete solutions for environmental protection, energy saving, product quality improvement and other aspects.

We are also engaged in various spares and independent equipment for color coating line, galvanizing line, pickling line, like roller, coupler, heat exchanger, recuperator, air knife, blower, welder, tension leveler, skin pass, expansion joint, shear, jointer, stitcher, burner, radiant tube, gear motor, reducer, etc.

regenerative thermal oxidizers

Can a regenerative thermal oxidizer be retrofitted into an existing facility?

Yes, regenerative thermal oxidizers (RTOs) can be retrofitted into existing facilities under certain conditions. Retrofitting an RTO involves integrating the system into the existing infrastructure and process flow of the facility to control emissions from industrial processes. However, the feasibility of retrofitting an RTO depends on several factors related to the facility and the specific requirements of the application.

Here are some considerations for retrofitting an RTO into an existing facility:

  • Space Availability: RTOs typically require a significant amount of physical space for installation. It’s important to assess whether the facility has adequate space to accommodate the size and layout requirements of the RTO system. This includes considering the space needed for the RTO unit itself, associated ductwork, auxiliary systems, and access for maintenance.
  • Process Integration: Retrofitting an RTO involves integrating the system into the existing industrial process. This integration may require modifications to the process flow, such as rerouting ductwork, adding or modifying exhaust points, or coordinating with existing pollution control equipment. The compatibility of the RTO with the existing process and the ability to seamlessly integrate the system should be evaluated.
  • Auxiliary Systems: In addition to the RTO unit, auxiliary systems may be required for effective operation and compliance. These systems can include pre-treatment equipment such as scrubbers or filters, heat recovery units, monitoring and control systems, and stack emissions monitoring equipment. The availability of space and compatibility with existing infrastructure should be considered for accommodating these auxiliary systems.
  • Utility Requirements: RTOs have specific utility requirements, such as the need for natural gas or electricity for heating the combustion chamber and operating the control system. The availability and capacity of utilities at the existing facility should be assessed to ensure they can meet the demands of the RTO system.
  • Structural Considerations: The structural integrity of the facility should be evaluated to determine if it can support the additional weight of the RTO and associated equipment. This assessment may involve consulting with structural engineers and considering any necessary reinforcements or modifications.
  • Regulatory Compliance: Retrofitting an RTO may require obtaining permits and complying with environmental regulations. It is essential to assess the applicable regulations and ensure that the retrofit meets the necessary compliance requirements for emissions control.

It is important to consult with experienced engineering firms or RTO manufacturers who can assess the specific requirements and constraints of the facility. They can provide detailed evaluations, feasibility studies, and design recommendations for retrofitting an RTO into an existing facility. Their expertise can help ensure that the retrofit is successful, cost-effective, and compliant with environmental regulations.

regenerative thermal oxidizers

Are regenerative thermal oxidizers safe to operate?

Regenerative thermal oxidizers (RTOs) are designed with safety considerations to ensure their safe operation. When properly installed, operated, and maintained, RTOs provide a high level of safety. Here are some key points regarding the safety of operating RTOs:

  • Combustion and Fire Safety: RTOs are designed to safely combust and destroy volatile organic compounds (VOCs) and other pollutants in the exhaust stream. They incorporate various safety features to prevent the risk of uncontrolled fires or explosions. These features may include flame arrestors, temperature sensors, pressure relief devices, and automated shutdown systems to ensure safe operation in the event of abnormal operating conditions.
  • Control and Monitoring Systems: RTOs are equipped with advanced control and monitoring systems that continuously monitor various parameters such as temperature, pressure, and flow rates. These systems provide real-time data to operators, allowing them to detect any deviations from normal operating conditions promptly. Alarms and safety interlocks are often included to alert operators and initiate appropriate actions in case of abnormal situations.
  • Heat Recovery and Thermal Efficiency: RTOs are designed to maximize thermal efficiency by recovering and reusing heat generated during the oxidization process. This reduces the overall energy consumption and minimizes the risk of heat buildup within the system, contributing to safe operation and preventing excessive temperatures that could pose safety hazards.
  • Equipment and Material Selection: RTOs are constructed using materials that can withstand the high temperatures and corrosive conditions encountered during operation. Heat-resistant materials, such as ceramic beds or metallic heat exchangers, are commonly used. Proper material selection ensures the integrity and longevity of the equipment, reducing the risk of failures or leaks that could compromise safety.
  • Compliance with Standards and Regulations: RTOs must comply with applicable safety standards and regulations. These standards define specific requirements for the design, installation, operation, and maintenance of air pollution control systems, including RTOs. Compliance with these standards ensures that the RTOs meet the necessary safety criteria and helps safeguard the health and well-being of personnel and the surrounding environment.
  • Operator Training and Maintenance: Adequate operator training and regular maintenance are crucial for safe RTO operation. Operators should receive comprehensive training on the system’s operation, safety procedures, and emergency response protocols. Additionally, routine maintenance and inspections help identify and address any potential safety concerns or equipment issues before they escalate.

While RTOs are generally safe to operate, it is essential to follow the manufacturer’s guidelines, maintain proper safety protocols, and adhere to applicable regulations to ensure safe and reliable operation.

regenerative thermal oxidizers

How does a regenerative thermal oxidizer work?

A regenerative thermal oxidizer (RTO) is an advanced air pollution control device that operates through a cyclical process to remove volatile organic compounds (VOCs), hazardous air pollutants (HAPs), and other airborne contaminants from exhaust gases. Here’s a detailed explanation of how an RTO works:

1. Inlet Plenum: The exhaust gases containing pollutants enter the RTO through the inlet plenum.

2. Heat Exchanger Beds: The RTO contains multiple heat exchanger beds filled with heat storage media, typically ceramic materials or structured packing. The heat exchanger beds are arranged in pairs.

3. Flow Control Valves: Flow control valves direct the airflow and control the direction of the exhaust gases through the RTO.

4. Combustion Chamber: The exhaust gases, now directed into the combustion chamber, are heated to a high temperature, typically between 1400°F (760°C) and 1600°F (870°C). This temperature range ensures effective thermal oxidation of the pollutants.

5. VOC Destruction: The high temperature in the combustion chamber causes the VOCs and other contaminants to react with oxygen, resulting in their thermal decomposition or oxidation. This process breaks down the pollutants into water vapor, carbon dioxide, and other harmless gases.

6. Heat Recovery: The hot, purified gases leaving the combustion chamber pass through the outlet plenum and flow through the heat exchanger beds that are in the opposite phase of operation. The heat storage media in the beds absorb heat from the outgoing gases, which preheats the incoming exhaust gases.

7. Cycle Switching: After a specific time interval, the flow control valves switch the airflow direction, allowing the heat exchanger beds that were preheating the incoming gases to now receive the hot gases from the combustion chamber. The cycle then repeats, ensuring continuous and efficient operation.

Advantages of a regenerative thermal oxidizer:

RTOs offer several advantages in industrial air pollution control:

1. High Efficiency: RTOs can achieve high destruction efficiencies, typically above 95%, effectively removing a wide range of pollutants.

2. Energy Recovery: The heat recovery mechanism in RTOs allows for significant energy savings. The preheating of incoming gases reduces the fuel consumption required for combustion, making RTOs energy-efficient.

3. Cost-effectiveness: Although the initial capital investment for an RTO can be significant, the long-term operational cost savings through energy recovery and high destruction efficiencies make it a cost-effective solution over the lifespan of the system.

4. Environmental Compliance: RTOs are designed to meet stringent emissions regulations and help industries comply with air quality standards and permits.

5. Versatility: RTOs can handle a wide range of process exhaust volumes and pollutant concentrations, making them suitable for various industrial applications.

Overall, a regenerative thermal oxidizer operates by utilizing heat recovery, high-temperature combustion, and cyclical flow control to effectively oxidize pollutants and achieve high destruction efficiencies while minimizing energy consumption.

China OEM Rto/Regenerative Thermal Oxidizer
editor by CX 2024-02-10

en_USEN