Basic Info.
Model NO.
Amazing RTO
Type
Incinerator
High Efficiency
100
Energy Saving
100
Low Maintenance
100
Easy Operation
100
Trademark
Bjamazing
Transport Package
Overseas
Specification
111
Origin
China
HS Code
2221111
Product Description
RTO
Regenerative Thermal Oxidizer
Compared with traditional catalytic combustion,; direct thermal oxidizer,; RTO has the merits of high heating efficiency,; low operation cost,; and the ability to treat large flux low concentration waste gas.; When VOCs concentration is high,; secondary heat recycle can be realized,; which will greatly reduce the operation cost.; Because RTO can preheat the waste gas by levels through ceramic heat accumulator,; which could make the waste gas to be completely heated and cracked with no dead corner(treatment efficiency>99%);,;which reduce the NOX in the Exhausting gas,; if the VOC density >1500mg/Nm3,; when the waste gas reach cracking area,; it has been heated up to cracking temperature by heat accumulator,; the burner will be closed under this condition.;
RTO can be devided into chamber type and rotary type according to difference operation mode.; Rotary type RTO has advantages in system pressure,; temperature stability,; investment amount,; etc
RTO types | Efficiency | Pressure change (mmAq); | Size | (max);Treatment volume | |
Treatment efficiency | Heat recycle efficiency | ||||
Rotary type RTO | 99 % | 97 % | 0-4 | small (1 time); | 50000Nm3/h |
Three chamber type RTO | 99 % | 97 % | 0-10 | Large (1.;5times); | 100000Nm3/h |
Two chamber type RTO | 95 % | 95 % | 0-20 | middle (1.;2times); | 100000Nm3/h |
Regenerative Thermal Oxidizer,; Regenerative Thermal Oxidizer,; Regenerative Thermal Oxidizer,; Thermal Oxidizer,; Thermal Oxidizer,; Thermal Oxidizer,; oxidizer,; oxidizer,; oxidizer,; incinerator,; incinerator,; incinerator,; waste gas treatment,; waste gas treatment,; waste gas treatment,; VOC treatment,; VOC treatment,; VOC treatment,; RTO,; RTO,; RTO,; Rotary RTO,; Rotary RTO,; Rotary RTO,; Chamber RTO,; Chamber RTO,; Chamber RTO
Address: 8 floor, E1, Pinwei building, Dishengxi road, Yizhuang, ZheJiang , China
Business Type: Manufacturer/Factory, Trading Company
Business Range: Electrical & Electronics, Industrial Equipment & Components, Manufacturing & Processing Machinery, Metallurgy, Mineral & Energy
Management System Certification: ISO 9001, ISO 14001
Main Products: Rto, Color Coating Line, Galvanizing Line, Air Knife, Spares for Processing Line, Coater, Independent Equipments, Sink Roll, Revamping Project, Blower
Company Introduction: ZheJiang Amazing Science & Technology Co., Ltd is a thriving Hi-tech company, located in ZheJiang Economic and Technological Development Area(BDA). Adhering to the concept of Realistic, Innovative, Focused and Efficient, our company mainly serve the waste gas treatment (VOCs) Industry and metallurgical equipment of China and even whole world. We have advanced technology and rich experience in VOCs waste gas treatment project, the reference of which has been successfully applied to the industry of coating, rubber, electronic, printing, etc. We also have years of technology accumulation in the research and manufacturing of flat steel processing line, and possess nearly 100 of application example.
Our company focus on the research, design, manufacturing, installation and commissioning of VOCs organic waste gas treatment system and the revamping and updating project for energy saving and environmental protection of flat steel processing line. We can provide customers the complete solutions for environmental protection, energy saving, product quality improvement and other aspects.
We are also engaged in various spares and independent equipment for color coating line, galvanizing line, pickling line, like roller, coupler, heat exchanger, recuperator, air knife, blower, welder, tension leveler, skin pass, expansion joint, shear, jointer, stitcher, burner, radiant tube, gear motor, reducer, etc.
How much energy can be recovered by a regenerative thermal oxidizer?
The amount of energy that can be recovered by a regenerative thermal oxidizer (RTO) depends on several factors, including the design of the RTO system, the operating conditions, and the specific characteristics of the exhaust gases being treated. Generally, RTOs are known for their high energy recovery efficiency, and they can recover a significant portion of the thermal energy from the exhaust gases.
Here are some key factors that influence the energy recovery potential of an RTO:
- Heat Recovery System: The design and efficiency of the heat recovery system in the RTO significantly impact the amount of energy that can be recovered. RTOs typically use ceramic media beds or heat exchangers to capture and transfer heat between the exhaust gases and the incoming untreated gases. Well-designed heat exchangers with a large surface area and good thermal conductivity can enhance the energy recovery efficiency.
- Temperature Differential: The temperature difference between the exhaust gases and the incoming untreated gases affects the energy recovery potential. The greater the temperature differential, the higher the potential for energy recovery. RTOs operating at higher temperature differentials can recover more energy compared to those with smaller differentials.
- Flow Rates and Heat Capacity: The flow rates of the exhaust gases and incoming untreated gases, as well as their respective heat capacities, are important factors in determining the energy recovery capability. Higher flow rates and larger heat capacities result in more heat available for recovery.
- Process Specifics: The specific characteristics of the industrial process and the composition of the exhaust gases being treated can influence the energy recovery potential. For example, exhaust gases with high concentrations of volatile organic compounds (VOCs) or other combustible components can provide a higher energy recovery potential.
- Efficiency and System Optimization: The efficiency of the RTO system itself, including the combustion chamber, heat exchangers, and control mechanisms, also plays a role in the energy recovery. Well-maintained and optimized RTO systems can maximize the energy recovery potential.
While it is challenging to provide an exact numerical value for the energy recovery potential of an RTO, it is not uncommon for RTOs to achieve energy recovery efficiencies in the range of 90% or higher. This means that they can recover and reuse 90% or more of the thermal energy contained in the exhaust gases, significantly reducing the need for external fuel sources.
It’s important to note that the actual energy recovery achieved by an RTO will depend on the specific operating conditions, pollutant concentrations, and other factors mentioned above. Consulting with RTO manufacturers or conducting a detailed energy analysis can provide more accurate estimations of the energy recovery potential for a particular RTO system.
Can regenerative thermal oxidizers be used for treating emissions from paint booths?
Yes, regenerative thermal oxidizers (RTOs) can be effectively used for treating emissions from paint booths. Paint booths generate volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) during the painting process, which need to be controlled to comply with environmental regulations and ensure air quality. Here are some key points regarding the use of RTOs for treating emissions from paint booths:
- Emission Control: RTOs are designed to achieve high destruction efficiencies for VOCs and HAPs. These pollutants are oxidized within the RTO at high temperatures, typically above 95% efficiency, converting them into carbon dioxide (CO2) and water vapor. This ensures effective control and reduction of emissions from the paint booth.
- Paint Booth Compatibility: RTOs can be integrated into the exhaust system of paint booths, capturing and treating the emissions before they are released into the atmosphere. The RTO is typically connected to the exhaust stack of the paint booth, allowing the VOC-laden air to pass through the oxidizer for treatment.
- Thermal Capacity: Paint booth emissions can vary in terms of flow rate, temperature, and concentration of VOCs. RTOs are designed to handle a wide range of operating conditions and can accommodate high flow rates and elevated temperatures. The system’s thermal capacity ensures effective treatment of emissions from paint booths, even during peak production periods.
- Heat Recovery: RTOs incorporate heat exchange systems that allow for the recovery and reuse of thermal energy. The heat exchangers within the RTO capture the heat from the outgoing exhaust gases and transfer it to the incoming process air or gas stream. This heat recovery process improves the overall energy efficiency of the system and reduces the need for additional fuel consumption.
- Compliance with Regulations: Paint booth emissions are subject to regulatory requirements for air quality and emissions control. RTOs are capable of achieving the necessary destruction efficiencies and can help paint booth operators comply with environmental regulations. The use of RTOs demonstrates a commitment to sustainable practices and responsible management of air emissions.
It is important to note that the specific design and configuration of the RTO, as well as the characteristics of the paint booth emissions, should be considered when implementing an RTO for a paint booth application. Consulting with experienced engineers or RTO manufacturers can provide valuable insights into the proper sizing, integration, and performance requirements for treating emissions from paint booths.
In summary, RTOs are a suitable and effective technology for treating emissions from paint booths, providing high destruction efficiencies, compatibility with paint booth exhaust systems, thermal capacity for varying operating conditions, heat recovery, and compliance with environmental regulations.
What is the lifespan of a regenerative thermal oxidizer?
The lifespan of a regenerative thermal oxidizer (RTO) can vary depending on several factors, including the quality of the equipment, proper maintenance, operating conditions, and technological advancements. Generally, a well-designed and properly maintained RTO can have a lifespan ranging from 15 to 25 years or more.
Here are some factors that can influence the lifespan of an RTO:
- Quality of Construction: RTOs constructed with high-quality materials, such as corrosion-resistant alloys and refractory linings, tend to have a longer lifespan. Robust construction ensures durability and resistance to the harsh operating conditions often encountered in industrial processes.
- Maintenance Practices: Regular and proactive maintenance is crucial to maximize the lifespan of an RTO. This includes periodic inspections, cleaning and replacement of components, such as valves, dampers, and ceramic media beds, and monitoring of operating parameters. Adequate maintenance helps prevent premature equipment failure and ensures optimal performance.
- Operating Conditions: The operating conditions of the RTO, such as temperature, gas composition, and particulate loading, can affect its lifespan. Operating the RTO within its design parameters and avoiding excessive thermal or chemical stresses can contribute to a longer lifespan.
- Technological Advancements: Over time, technological advancements may lead to the introduction of more efficient and durable components or improvements in the overall design of RTOs. Upgrading or retrofitting an older RTO with newer technologies can extend its lifespan and enhance its performance.
- Environmental Factors: Environmental factors, such as exposure to corrosive gases, high humidity, or harsh climates, can impact the lifespan of an RTO. Proper design considerations and protective measures, such as corrosion-resistant coatings or insulation, can mitigate these effects and prolong the equipment’s lifespan.
It is important to note that the lifespan mentioned is a general estimate and can vary depending on the specific circumstances. Regular inspections, maintenance, and adherence to manufacturer’s guidelines are essential to ensure the longevity and reliable operation of an RTO.
editor by Dream 2024-11-05