Yandex Metrika

基本訊息

類型

環境監測儀器

主要功能

廢氣去除

應用

化工

品牌

雷德桑特

清潔效率

99.8%

狀態

新的

商標

雷德桑特

運輸套餐

薄膜包裹

起源

中國 浙江

產品描述

杭州瑞德森機械有限公司;,;有限公司;專業開發製造創新粉末冷卻造粒機械及相關工業廢氣處理設備。具有近20年的生產歷史;我們在中國20多個省份擁有良好的市場;部分產品出口沙烏地阿拉伯、新加坡、墨西哥、巴西,;西班牙,;美國,;俄羅斯和韓國; ETC。

規格:;

* 比現有設施更緊湊 
* 營運成本低 
* 設施使用壽命長 
* 壓力無變化

目的:;

燃燒揮發性有機化合物(VOC)的節能係統;利用熱量產生廢氣;採用陶瓷蓄熱材料(催化劑)收集99.;8%以上的廢氣餘熱;表面積大,壓力損失低;

應用:;

1.;塗裝乾燥工藝
2.;金屬印刷工藝
3.;纖維乾燥過程
4.;膠帶工藝
5.;廢棄物處理工藝
6.;半導體製造工藝
7.;抽煙,;糖果和烘焙過程
8.;石化過程; 
9.;醫藥和食品製造過程; 
10.;其他VOC產生過程

優點:;

 * 比現有設施更緊湊
 * 壓力無變化
 * 熱回收率高(95%以上);
 * 完善的VOC處理(99.;8%以上);
  * 設施使用壽命長
  * 營運成本低
  * 可製作圓形或四邊形

一般描述與特點:; 

1.;工作原理
 透過旋轉旋轉閥連續改變流量的操作方法

2.;過程壓力變化
  由於旋轉閥的旋轉,風向會發生順序變化,因此壓力不會變化

3.;投資成本
 約 70% 的床型

4.;安裝空間
 它是單一容器,因此結構緊湊,需要的安裝空間較小。

5.;維護
 由於旋轉閥是唯一的 1 個移動部件,因此易於維護。
 旋轉閥由於旋轉速度低,密封件很少磨損;

6.;穩定
在此過程中沒有風險,因為即使旋轉閥出現故障,它也始終打開。

7.;處理效率
 即使長時間運行,密封件也很少磨損,處理效率得以維持;

 

地址:浙江省杭州市經濟開發區振新中路3號

業務類型: 製造商/工廠, 貿易公司

業務範圍:化工、電氣電子、製造加工機械、安全防護

管理系統認證:ISO 9001

主要產品:造粒機、刨片機、造粒機、造粒機、化學造粒機、Vocs

公司簡介:杭州瑞德森機械有限公司,前身為杭州新特塑膠機械廠,是一家專業生產創新塑膠回收機械的企業。憑藉近20年的經驗,我們在國內20個省市自治區擁有良好的市場,部分產品出口到印尼、俄羅斯、越南等。管材撕碎回收生產線、連續退火鍍錫機、QX型PET、PE及皮殼清洗生產線、SDP雙軌塑膠回收破碎機、SJ熱切造粒機組、PVC管(五葉)生產線、PVC異型材產品門窗生產線、水中顆粒生產線以及塑膠和回收粉碎機。我們獲得了5項技術專利。

本公司注重技術改造,引進國內外先進技術,不斷開發新產品。我們的宗旨是挑戰高品質,提供最好的產品。我們正在努力實現我們的口號。讓客戶滿意是我們永恆的追求。

我們正在尋找海外客戶或代理商。如果您對我們的提案感興趣,請讓我們知道我們的哪種產品最有可能吸引您或您的客戶。如果您能給我們一些關於我們產品的市場前景的想法,我們將不勝感激。我們希望盡快收到您的有利訊息!我們的目標是希望現在或不久的將來能與您建立良好的關係。如果您有任何問題或要求,請隨時與我們聯繫。

我們也真誠歡迎您來本公司洽談業務、洽談業務。為進一步拓展市場與客戶,本公司以全新的經營理念-品質、榮譽、服務,以全新的品牌姿態迎接國內外客戶。我們正在尋找 ISO 90001 管理品質系統來滿足客戶的要求!

蓄熱式熱氧化器

Are there any incentives or grants available for installing regenerative thermal oxidizers?

Yes, there are various incentives and grants available that can help offset the cost of installing regenerative thermal oxidizers (RTOs) and other emission control technologies. These incentives are typically offered by government agencies at the local, regional, and national levels to promote environmental sustainability, air quality improvement, and compliance with emissions regulations. However, the availability and specific details of these incentives may vary depending on the location and the specific program.

Here are some examples of incentives and grants that may be available:

  • Energy Efficiency Grants: Many government agencies and utility companies offer grants and financial incentives to encourage energy efficiency measures, including the installation of energy-efficient equipment like RTOs. These grants can help offset a portion of the installation costs and may be based on factors such as energy savings, reduction in greenhouse gas emissions, or specific environmental objectives.
  • Environmental Grant Programs: Some governmental organizations or environmental foundations provide grants specifically targeted at reducing emissions and improving air quality. These grants may be available for industries or businesses that invest in emission control technologies, such as RTOs, to help them comply with regulations and improve their environmental performance.
  • Tax Incentives and Credits: Certain jurisdictions offer tax incentives or credits to businesses or industries that invest in environmentally friendly technologies. These incentives can significantly reduce the overall cost of installing an RTO. Examples include tax credits for energy-efficient equipment, accelerated depreciation allowances, or exemptions from sales tax on eligible equipment purchases.
  • Industry-Specific Programs: Some industries or sectors may have specific grant programs or incentives tailored to their unique environmental challenges. These programs may provide financial assistance for emission control projects, including the installation of RTOs, within those industries.
  • Research and Development Funding: Government agencies or research organizations often provide funding opportunities for the development and implementation of innovative emission control technologies. Businesses or research institutions involved in developing advanced RTO designs or improving RTO efficiency may be eligible for research grants or funding support.

To explore the availability of incentives and grants for installing RTOs, it is recommended to contact local environmental agencies, energy efficiency programs, or business development organizations. These entities can provide information on specific incentive programs, eligibility criteria, application procedures, and any deadlines or limitations associated with the grants.

It’s important to note that incentive programs may change over time, and their availability may depend on factors such as funding allocations and government policies. Therefore, it is advisable to stay updated with the latest information and consult with relevant authorities to determine the current incentives available for installing RTOs.

蓄熱式熱氧化器

Can regenerative thermal oxidizers handle corrosive exhaust gases?

Regenerative thermal oxidizers (RTOs) can be designed to handle corrosive exhaust gases effectively. However, the ability of an RTO to handle corrosive gases depends on several factors, including the choice of construction materials, operating conditions, and the specific corrosive nature of the exhaust gases. Here are some key points regarding the handling of corrosive exhaust gases in RTOs:

  • Material Selection: The selection of appropriate construction materials is crucial when dealing with corrosive gases. RTOs can be constructed using materials that offer high resistance to corrosion, such as stainless steel, corrosion-resistant alloys (e.g., Hastelloy, Inconel), or coated materials. The choice of materials depends on the specific corrosive compounds present in the exhaust gases and their concentrations.
  • Corrosion-Resistant Coatings: In addition to selecting corrosion-resistant materials, applying protective coatings can enhance the resistance of the RTO components to corrosive gases. Coatings such as ceramic coatings, epoxy coatings, or acid-resistant paints can provide an extra layer of protection against corrosion.
  • Temperature Control: Maintaining appropriate operating temperatures in the RTO can help mitigate the corrosive effects of the exhaust gases. Higher temperatures can promote the decomposition of corrosive compounds, reducing their corrosive potential. Additionally, operating at higher temperatures can enhance the self-cleaning effect and prevent the accumulation of corrosive deposits on the surfaces.
  • Gas Conditioning: Prior to entering the RTO, the exhaust gases can undergo gas conditioning processes to reduce their corrosive nature. This may involve pre-treatment methods such as scrubbing or neutralization to remove or neutralize corrosive compounds and reduce their concentration.
  • Monitoring and Maintenance: Regular monitoring of the RTO performance and periodic maintenance are essential to ensure the effective handling of corrosive exhaust gases. Monitoring systems can track variables such as temperature, pressure, and gas composition to detect any deviations that may indicate corrosion-related issues. Proper maintenance, including cleaning and inspection of the components, helps identify and address any corrosion concerns in a timely manner.

It is important to note that the corrosiveness of exhaust gases can vary significantly depending on the specific industrial process and the pollutants involved. Therefore, when designing an RTO for handling corrosive gases, it is advisable to consult with experienced engineers or RTO manufacturers who can provide guidance on the appropriate design considerations and material selection.

By employing suitable materials, coatings, temperature control, gas conditioning, and maintenance practices, RTOs can effectively handle corrosive exhaust gases while ensuring their long-term performance and durability.

蓄熱式熱氧化器

What is the lifespan of a regenerative thermal oxidizer?

The lifespan of a regenerative thermal oxidizer (RTO) can vary depending on several factors, including the quality of the equipment, proper maintenance, operating conditions, and technological advancements. Generally, a well-designed and properly maintained RTO can have a lifespan ranging from 15 to 25 years or more.

Here are some factors that can influence the lifespan of an RTO:

  • Quality of Construction: RTOs constructed with high-quality materials, such as corrosion-resistant alloys and refractory linings, tend to have a longer lifespan. Robust construction ensures durability and resistance to the harsh operating conditions often encountered in industrial processes.
  • Maintenance Practices: Regular and proactive maintenance is crucial to maximize the lifespan of an RTO. This includes periodic inspections, cleaning and replacement of components, such as valves, dampers, and ceramic media beds, and monitoring of operating parameters. Adequate maintenance helps prevent premature equipment failure and ensures optimal performance.
  • Operating Conditions: The operating conditions of the RTO, such as temperature, gas composition, and particulate loading, can affect its lifespan. Operating the RTO within its design parameters and avoiding excessive thermal or chemical stresses can contribute to a longer lifespan.
  • Technological Advancements: Over time, technological advancements may lead to the introduction of more efficient and durable components or improvements in the overall design of RTOs. Upgrading or retrofitting an older RTO with newer technologies can extend its lifespan and enhance its performance.
  • Environmental Factors: Environmental factors, such as exposure to corrosive gases, high humidity, or harsh climates, can impact the lifespan of an RTO. Proper design considerations and protective measures, such as corrosion-resistant coatings or insulation, can mitigate these effects and prolong the equipment’s lifespan.

It is important to note that the lifespan mentioned is a general estimate and can vary depending on the specific circumstances. Regular inspections, maintenance, and adherence to manufacturer’s guidelines are essential to ensure the longevity and reliable operation of an RTO.

China supplier Rto- Regenerative Thermal Oxidizer
editor by CX 2024-04-12

zh_TWZH_TW