基本訊息
型號
Amazing RTO
類型
Incinerator
Energy Saving
100
Easy for Operation
100
High Efficiency
100
Less Maintenance
100
商標
Bjamazing
運輸套餐
Overseas Wooden
Specification
180*24
起源
China
HS Code
8416100000
產品描述
RTO
蓄熱式熱氧化器
Compared with traditional catalytic combustion,; direct thermal oxidizer,; RTO has the merits of high heating efficiency,; low operation cost,; and the ability to treat large flux low concentration waste gas.; When VOCs concentration is high,; secondary heat recycle can be realized,; which will greatly reduce the operation cost.; Because RTO can preheat the waste gas by levels through ceramic heat accumulator,; which could make the waste gas to be completely heated and cracked with no dead corner(treatment efficiency>99%);,;which reduce the NOX in the Exhausting gas,; if the VOC density >1500mg/Nm3,; when the waste gas reach cracking area,; it has been heated up to cracking temperature by heat accumulator,; the burner will be closed under this condition.;
RTO can be devided into chamber type and rotary type according to difference operation mode.; Rotary type RTO has advantages in system pressure,; temperature stability,; investment amount,; etc
RTO types | Efficiency | Pressure change (mmAq); | 尺寸 | (max);Treatment volume | |
Treatment efficiency | Heat recycle efficiency | ||||
Rotary type RTO | 99 % | 97 % | 0-4 | small(1 time); | 50000Nm3/h |
Three chamber type RTO | 99 % | 97 % | 0-10 | Large (1.;5times); | 100000Nm3/h |
Two chamber type RTO | 95 % | 95 % | 0-20 | middle(1.;2times); | 100000Nm3/h |
Regenerative Thermal Oxidizer,; Regenerative Thermal Oxidizer,; Regenerative Thermal Oxidizer,; Thermal Oxidizer,; Thermal Oxidizer,; Thermal Oxidizer,; oxidizer,; oxidizer,; oxidizer,; incinerator,; incinerator,; incinerator,; waste gas treatment,; waste gas treatment,; waste gas treatment,; VOC treatment,; VOC treatment,; VOC treatment,; RTO,; RTO,; RTO,; RTO,; RTO,; RTO
Address: 8 floor, E1, Pinwei building, Dishengxi road, Yizhuang, ZheJiang , China
業務類型: 製造商/工廠, 貿易公司
Business Range: Electrical & Electronics, Industrial Equipment & Components, Manufacturing & Processing Machinery, Metallurgy, Mineral & Energy
Management System Certification: ISO 9001, ISO 14001
Main Products: Rto, Color Coating Line, Galvanizing Line, Air Knife, Spares for Processing Line, Coater, Independent Equipments, Sink Roll, Revamping Project, Blower
Company Introduction: ZheJiang Amazing Science & Technology Co., Ltd is a thriving Hi-tech company, located in ZheJiang Economic and Technological Development Area(BDA). Adhering to the concept of Realistic, Innovative, Focused and Efficient, our company mainly serve the waste gas treatment (VOCs) Industry and metallurgical equipment of China and even whole world. We have advanced technology and rich experience in VOCs waste gas treatment project, the reference of which has been successfully applied to the industry of coating, rubber, electronic, printing, etc. We also have years of technology accumulation in the research and manufacturing of flat steel processing line, and possess nearly 100 of application example.
Our company focus on the research, design, manufacturing, installation and commissioning of VOCs organic waste gas treatment system and the revamping and updating project for energy saving and environmental protection of flat steel processing line. We can provide customers the complete solutions for environmental protection, energy saving, product quality improvement and other aspects.
We are also engaged in various spares and independent equipment for color coating line, galvanizing line, pickling line, like roller, coupler, heat exchanger, recuperator, air knife, blower, welder, tension leveler, skin pass, expansion joint, shear, jointer, stitcher, burner, radiant tube, gear motor, reducer, etc.
Can regenerative thermal oxidizers be used for odor control in sewage treatment plants?
Regenerative thermal oxidizers (RTOs) are not commonly used for odor control in sewage treatment plants. While RTOs are effective in controlling gaseous pollutants, their application for odor control in wastewater treatment facilities has certain limitations and considerations.
Here are some key points to consider regarding the use of RTOs for odor control in sewage treatment plants:
- Nature of Odorous Compounds: Odors in sewage treatment plants are primarily caused by volatile organic compounds (VOCs) and sulfur compounds released during the treatment processes. RTOs are effective in treating VOCs, but they may not be specifically designed to address sulfur compounds, which can be challenging to control through thermal oxidation.
- Operating Temperature: RTOs require high operating temperatures for efficient pollutant destruction. However, the presence of sulfur compounds in sewage treatment plant emissions can lead to corrosion and fouling at elevated temperatures, potentially impacting the performance and lifespan of the RTO system.
- Complex Odor Mixture: Odors in sewage treatment plants are often complex mixtures of various compounds. RTOs are generally designed to treat specific target pollutants and may not be optimized for the treatment of the wide range of compounds present in sewage plant odors. A comprehensive odor control strategy typically involves multiple treatment techniques tailored to the specific odor profile.
- Alternative Odor Control Technologies: Sewage treatment plants typically employ a combination of dedicated odor control technologies such as biofilters, activated carbon adsorption systems, chemical scrubbers, or other specialized methods. These technologies are specifically designed for the removal of odorous compounds and are often more suitable and efficient for odor control in wastewater treatment facilities.
- Compliance with Regulations: Odor emissions from sewage treatment plants are subject to regulatory requirements and local community sensitivities. Sewage treatment facilities need to comply with applicable regulations and implement effective odor control measures that are proven to be efficient in mitigating the specific odor issues associated with their operations.
In summary, while RTOs are effective for controlling gaseous pollutants, they are not commonly used as the primary odor control technology in sewage treatment plants. Sewage treatment facilities typically employ dedicated odor control technologies that are specifically designed for the removal of odorous compounds and can provide optimal performance and compliance with odor regulations.
What is the impact of regenerative thermal oxidizers on greenhouse gas emissions?
Regenerative thermal oxidizers (RTOs) play a significant role in reducing greenhouse gas emissions. They are effective in mitigating the release of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs), which are major contributors to greenhouse gas emissions and air pollution. Here are some key points regarding the impact of RTOs on greenhouse gas emissions:
- VOC and HAP Destruction: RTOs are designed to achieve high destruction efficiencies for VOCs and HAPs. These pollutants, which are often emitted from industrial processes, are oxidized within the RTO at high temperatures, typically above 95% efficiency. By converting these pollutants into carbon dioxide (CO2) and water vapor, RTOs prevent their release into the atmosphere, thereby reducing greenhouse gas emissions.
- Carbon Neutrality: While RTOs do produce CO2 as a byproduct of the oxidation process, the net impact on greenhouse gas emissions is considered minimal. This is because the CO2 generated by the RTO is derived from the VOCs and HAPs, which are themselves carbon-based compounds. The combustion of these pollutants in the RTO represents the conversion of carbon from one form to another, rather than introducing new carbon into the atmosphere. As a result, the overall carbon footprint is often considered neutral.
- Energy Efficiency: RTOs are designed to maximize energy efficiency by utilizing regenerative heat exchange systems. These systems recover and reuse a significant portion of the thermal energy from the exhaust gases, reducing the need for additional fuel consumption. By operating with high energy efficiency, RTOs help reduce the overall energy demand and associated greenhouse gas emissions from the facility.
- Compliance with Regulations: RTOs are frequently used in industrial applications to meet regulatory requirements for emissions control. By implementing RTOs, industries can achieve compliance with stringent air quality regulations and reduce their greenhouse gas emissions. Governments and environmental agencies often encourage or mandate the installation of RTOs to promote sustainable practices and minimize the environmental impact of industrial activities.
It is important to note that the specific impact of RTOs on greenhouse gas emissions can vary depending on factors such as the type and concentration of pollutants being treated, the operating conditions of the RTO, and the overall energy efficiency of the facility. Additionally, it is crucial to properly operate and maintain RTOs to ensure optimal performance and emissions control.
Overall, RTOs contribute to the reduction of greenhouse gas emissions by effectively controlling and destroying VOCs and HAPs, promoting energy efficiency, and facilitating compliance with environmental regulations.
What are the key components of a regenerative thermal oxidizer?
A regenerative thermal oxidizer (RTO) typically consists of several key components that work together to achieve effective air pollution control. The main components of an RTO include:
- 1. Combustion Chamber: The combustion chamber is where the oxidation of the pollutants takes place. It is designed to withstand high temperatures and house the ceramic media beds that facilitate heat exchange and VOC destruction. The combustion chamber provides a controlled environment for the combustion process to occur efficiently.
- 2. Ceramic Media Beds: Ceramic media beds are the heart of an RTO. They are filled with structured ceramic materials that act as a heat sink. The media beds alternate between the inlet and outlet sides of the RTO, allowing for efficient heat transfer. As the VOC-laden air passes through the media beds, it is heated by the stored heat from the previous cycle, promoting combustion and VOC destruction.
- 3. Valves or Dampers: Valves or dampers are used to direct the airflow within the RTO. They control the flow of the process air and the direction of the exhaust gases during the different phases of operation, such as the heating, combustion, and cooling cycles. Proper valve sequencing ensures optimal heat recovery and VOC destruction efficiency.
- 4. Burner System: The burner system provides the necessary heat to raise the temperature of the incoming process air to the required combustion temperature. It typically uses natural gas or another fuel source to generate the heat energy needed for the destruction of VOCs. The burner system is designed to provide stable and controlled combustion conditions within the RTO.
- 5. Heat Recovery System: The heat recovery system enables energy efficiency in an RTO. It captures and preheats the incoming process air by utilizing the heat energy from the outgoing exhaust stream. The heat exchange occurs between the ceramic media beds, allowing for significant energy savings and reducing the overall operating costs of the RTO.
- 6. Control System: The control system of an RTO monitors and regulates the operation of various components. It ensures proper valve sequencing, temperature control, and safety interlocks. The control system optimizes the performance of the RTO, maintains the desired destruction efficiency, and provides necessary alarms and diagnostics for efficient operation and maintenance.
- 7. Stack or Exhaust System: The stack or exhaust system is responsible for releasing the treated and cleaned gases into the atmosphere. It may include a stack, ductwork, and any necessary emission monitoring equipment to ensure compliance with environmental regulations.
These key components work together in a coordinated manner to provide efficient air pollution control in a regenerative thermal oxidizer. Each component plays a critical role in achieving high VOC destruction efficiency, energy recovery, and compliance with environmental standards.
editor by CX 2024-03-23