基本訊息
型號
RTO
Processing Methods
Combustion
Pullution Sources
Air Pollution Control
商標
RUIMA
起源
China
HS Code
84213990
產品描述
Regenerative Thermal Oxidizer (RTO);
The most widely used oxidation technique nowadays for
VOC emission reduction,; suitable for treating a wide range of solvents and processes.; Depending on air volume and required purification efficiency,; a RTO comes with 2,; 3,; 5 or 10 chambers.;
Advantages
Wide range of VOC’s to be treated
Low maintenance cost
High Thermal Efficiency
Does not generate any waste
Adaptable for small,; medium and large air flows
Heat Recovery via bypass if VOCs concentration exceed the auto-thermal point
Auto-thermal and Heat Recovery:;
Thermal Efficiency > 95%
Auto-thermal point at 1.;2 – 1.;7 mgC/Nm3
Air flow range from 2,; 000 up to 200,; 000m3/h
High VOC’s destruction
The purification efficiency is normally in excess of 99%
Address: No 3 North Xihu (West Lake) Dis. Road, Xihu (West Lake) Dis., HangZhou, ZheJiang , China
Business Type: Manufacturer/Factory
Business Range: Manufacturing & Processing Machinery, Service
Management System Certification: ISO 14001, ISO 9001, OHSAS/ OHSMS 18001, QHSE
Main Products: Dryer, Extruder, Heater, Twin Screw Extruder, Electrochemical Corrosion Protection Equ, Screw, Mixer, Pelletizing Machine, Compressor, Pelletizer
Company Introduction: The Res. Inst of Chem. Mach of the Ministry of Chemical Industry was founded in ZheJiang in 1958, and moved to HangZhou in 1965.
The Res. Inst of Automation of the Ministry of Chemical Industry was founded in HangZhou in 1963.
In 1997, the Res. Inst. Of Chem. Mach of the Ministry of Chemical Industry and the Res. Inst. Of Automation of the Ministry of Chemical Industry were combined to become the Res. Inst of Chemical Machinery and Automation of the Ministry of Chemical Industry.
In 2000, the Res. Inst of Chemical Machinery and Automation of the Ministry of ChemicalIndustry completed its transformation to enterprise and registered as CHINAMFG Instituteof Chemical Machinery and Automation.
Tianhua Institute has the following subordinated institutions:
Supervision and Inspection Center of the Quality of Chemical Equipments in HangZhou, ZheJiang Province
HangZhou Equipment Institute in HangZhou, ZheJiang Province;
Automation Institute in HangZhou, ZheJiang Province;
HangZhou Ruima Chemical Machinery Co Ltd in HangZhou, ZheJiang Province;
HangZhou Ruide Drying Technology Co Ltd in HangZhou, ZheJiang Province;
HangZhouLantai Plastics Machinery Co Ltd in HangZhou, ZheJiang Province;
ZheJiang Airuike Automation Technology Co Ltd in HangZhou, ZheJiang Province;
The HangZhou United Institute of Chemical Machinery and automation and the HangZhou United Institute of Petrochemical Industry Furnaces were founded by CHINAMFG Institute and the Sinopec.
Tianhua Institute has an occupation area of 80 000m2 and a total asset of 1 Yuan (RMB). The annual output value is 1 Yuan (RMB).
Tianhua Institute has about 916 employees, 75% of them are professional personnel. Among them are 23 professors, 249senior engineers, 226 engineers. 29 professors and senior engineers enjoy national special subsidy, On 5 people the title of Middle-aged and Young Specialist with Outstanding Contribution to the P. R. China are conferred
What is the cost of installing a regenerative thermal oxidizer?
The cost of installing a regenerative thermal oxidizer (RTO) can vary significantly depending on several factors. These factors include the size and capacity of the RTO, the specific requirements of the application, site conditions, and any additional customization or engineering needed. However, it’s important to note that RTOs are generally considered a significant capital investment due to their complex design and high-performance capabilities.
Here are some cost considerations associated with installing an RTO:
- RTO Size and Capacity: The size and capacity of the RTO, typically measured in terms of exhaust flow rate and pollutant concentration, are important cost factors. Larger RTOs capable of handling higher exhaust volumes and pollutant concentrations generally have higher upfront costs compared to smaller units.
- Engineering and Customization: The engineering and customization requirements for integrating the RTO into the existing industrial process can impact the installation cost. This includes factors such as ductwork modifications, electrical connections, and any necessary process integration to ensure proper functioning of the RTO within the overall system.
- Site Preparation: The site where the RTO will be installed may require preparation to accommodate the equipment. This can involve constructing foundations, providing adequate space for the RTO and associated components, and ensuring proper access for installation and maintenance.
- Auxiliary Systems and Equipment: In addition to the RTO itself, there may be auxiliary systems and equipment required for effective operation. This can include pre-treatment systems, such as scrubbers or filters, heat recovery units, monitoring and control systems, and stack emissions monitoring equipment. The cost of these additional components should be considered in the overall installation cost.
- Installation Labor and Equipment: The cost of labor and equipment required for the installation process, including crane services and specialized contractors, should be factored into the overall cost. The complexity of the installation and any specific site challenges can influence these costs.
- Permits and Compliance: Obtaining necessary permits and complying with regulatory requirements can involve additional costs. This includes fees for environmental permits, engineering studies, emissions testing, and compliance documentation.
Due to the many variables involved, it is challenging to provide a specific cost range for installing an RTO. It is recommended to consult with reputable RTO manufacturers or engineering firms, who can assess the specific requirements of the application and provide detailed cost estimates based on the project scope.
蓄熱式熱氧化器如何處理系統中顆粒物的堆積?
蓄熱式熱氧化器 (RTO) 採用各種機制來處理系統中顆粒物的堆積。灰塵、煙灰或其他固體顆粒等顆粒物會隨著時間的推移而積累,並可能影響 RTO 的性能和效率。以下是 RTO 處理顆粒物堆積的一些方法:
- 預過濾: RTO 可以採用預過濾系統,例如旋風分離器或袋式過濾器,以在較大的顆粒物質進入氧化器之前將其去除。這些預過濾器捕獲並收集顆粒,防止它們進入 RTO 並減少積聚的可能性。
- 自潔效果: RTO 的設計目的是對熱交換介質具有自清潔作用。在 RTO 運作期間,熱廢氣流過介質會導致顆粒燃燒或分解,從而最大限度地減少顆粒的累積。高溫和湍流有助於保持介質表面清潔,並降低大量顆粒堆積的風險。
- 吹掃週期: RTO 通常將吹掃循環作為其操作的一部分。這些循環涉及將少量清潔空氣或氣體引入系統以清除任何殘留的顆粒物質。吹掃空氣有助於去除或燒掉任何黏附在介質上的顆粒,確保介質的持續清潔。
- 定期維護: 定期維護對於防止 RTO 中顆粒物堆積過多至關重要。維護活動可能包括檢查和清潔熱交換介質,檢查和更換任何磨損的墊圈或密封件,以及監控系統是否有任何顆粒積聚的跡象。定期維護有助於確保最佳性能,並最大限度地降低與顆粒物堆積相關的操作問題的風險。
- 監控與警報: RTO 配備了監控系統,可追蹤壓力差、溫度和流量等各種參數。這些系統可以檢測任何可能表明顆粒物堆積的異常情況或過度壓力降。可以觸發警報和警報來通知操作員,提示他們採取適當的行動,例如啟動維護或清潔程序。
值得注意的是,用於處理顆粒物堆積的具體策略可能會根據 RTO 的設計和配置以及所處理的顆粒物的特性而有所不同。 RTO製造商和營運商應考慮這些因素並採取適當的措施,以確保系統中顆粒物的有效管理。
透過結合預過濾、利用自清潔效應、實施吹掃循環、進行定期維護以及採用監控系統,RTO 可以有效處理和減少顆粒物積聚,從而長期保持其性能和效率。
How do regenerative thermal oxidizers compare to other air pollution control devices?
Regenerative thermal oxidizers (RTOs) are highly regarded air pollution control devices that offer several advantages over other commonly used air pollution control technologies. Here’s a comparison of RTOs with some other air pollution control devices:
Comparison | 蓄熱式熱氧化器 (RTO) | Electrostatic Precipitators (ESPs) | Scrubbers |
---|---|---|---|
Efficiency | RTOs achieve high VOC destruction efficiency, typically exceeding 99%. They are highly effective in destroying volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). | ESPs are effective in collecting particulate matter, such as dust and smoke, but they are less effective in destroying VOCs and HAPs. | Scrubbers are efficient in removing certain pollutants, such as gases and particulate matter, but their performance may vary depending on the specific pollutants being targeted. |
適用性 | RTOs are suitable for a wide range of industries and applications, including high-volume exhaust gases. They can handle varying concentrations and types of pollutants. | ESPs are commonly used for particulate matter control in applications such as power plants, cement kilns, and steel mills. They are less suitable for VOC and HAP control. | Scrubbers are widely used for removing acid gases, such as sulfur dioxide (SO2) and hydrogen chloride (HCl), as well as certain odorous compounds. They are often employed in industries such as chemical manufacturing and wastewater treatment. |
Energy Efficiency | RTOs incorporate heat recovery systems that allow for significant energy savings. They can achieve high thermal efficiency by preheating the incoming process air using the heat from the outgoing exhaust stream. | ESPs consume relatively low energy compared to other technologies, but they do not offer heat recovery capabilities. | Scrubbers generally consume more energy compared to RTOs and ESPs due to the energy required for liquid atomization and pumping. However, some scrubber designs may incorporate heat recovery mechanisms. |
Space Requirements | RTOs typically require more space compared to ESPs and certain scrubber designs due to the need for ceramic media beds and larger combustion chambers. | ESPs have a compact design and require less space compared to RTOs and some scrubber configurations. | Scrubber designs vary in size and complexity. Certain scrubber types, such as packed bed scrubbers, may require a larger footprint compared to RTOs and ESPs. |
維護 | RTOs generally require regular maintenance of components such as valves, dampers, and ceramic media beds. Periodic media replacement may be necessary depending on the operating conditions. | ESPs require periodic cleaning of collection plates and electrodes. Maintenance activities involve the removal of accumulated particulate matter. | Scrubbers require maintenance of liquid circulation systems, pumps, and mist eliminators. Regular monitoring and adjustment of the chemical reagents used in the scrubbing process are also necessary. |
It’s important to note that the selection of an air pollution control device depends on the specific pollutants, process conditions, regulatory requirements, and economic considerations of the industrial application. Each technology has its own advantages and limitations, and it’s essential to evaluate these factors to determine the most appropriate solution for effective air pollution control.
editor by CX 2024-03-04