基本訊息
型號
Amazing RTO
類型
Incinerator
High Efficiency
100
Energy Saving
100
Low Maintenance
100
Easy Operation
100
商標
Bjamazing
運輸套餐
Overseas
Specification
111
起源
China
HS Code
2221111
產品描述
RTO
蓄熱式熱氧化器
Compared with traditional catalytic combustion,; direct thermal oxidizer,; RTO has the merits of high heating efficiency,; low operation cost,; and the ability to treat large flux low concentration waste gas.; When VOCs concentration is high,; secondary heat recycle can be realized,; which will greatly reduce the operation cost.; Because RTO can preheat the waste gas by levels through ceramic heat accumulator,; which could make the waste gas to be completely heated and cracked with no dead corner(treatment efficiency>99%);,;which reduce the NOX in the Exhausting gas,; if the VOC density >1500mg/Nm3,; when the waste gas reach cracking area,; it has been heated up to cracking temperature by heat accumulator,; the burner will be closed under this condition.;
RTO can be devided into chamber type and rotary type according to difference operation mode.; Rotary type RTO has advantages in system pressure,; temperature stability,; investment amount,; etc
RTO types | Efficiency | Pressure change (mmAq); | 尺寸 | (max);Treatment volume | |
Treatment efficiency | Heat recycle efficiency | ||||
Rotary type RTO | 99 % | 97 % | 0-4 | small (1 time); | 50000Nm3/h |
Three chamber type RTO | 99 % | 97 % | 0-10 | Large (1.;5times); | 100000Nm3/h |
Two chamber type RTO | 95 % | 95 % | 0-20 | middle (1.;2times); | 100000Nm3/h |
Regenerative Thermal Oxidizer,; Regenerative Thermal Oxidizer,; Regenerative Thermal Oxidizer,; Thermal Oxidizer,; Thermal Oxidizer,; Thermal Oxidizer,; oxidizer,; oxidizer,; oxidizer,; incinerator,; incinerator,; incinerator,; waste gas treatment,; waste gas treatment,; waste gas treatment,; VOC treatment,; VOC treatment,; VOC treatment,; RTO,; RTO,; RTO,; Rotary RTO,; Rotary RTO,; Rotary RTO,; Chamber RTO,; Chamber RTO,; Chamber RTO
Address: 8 floor, E1, Pinwei building, Dishengxi road, Yizhuang, ZheJiang , China
業務類型: 製造商/工廠, 貿易公司
Business Range: Electrical & Electronics, Industrial Equipment & Components, Manufacturing & Processing Machinery, Metallurgy, Mineral & Energy
Management System Certification: ISO 9001, ISO 14001
Main Products: Rto, Color Coating Line, Galvanizing Line, Air Knife, Spares for Processing Line, Coater, Independent Equipments, Sink Roll, Revamping Project, Blower
Company Introduction: ZheJiang Amazing Science & Technology Co., Ltd is a thriving Hi-tech company, located in ZheJiang Economic and Technological Development Area(BDA). Adhering to the concept of Realistic, Innovative, Focused and Efficient, our company mainly serve the waste gas treatment (VOCs) Industry and metallurgical equipment of China and even whole world. We have advanced technology and rich experience in VOCs waste gas treatment project, the reference of which has been successfully applied to the industry of coating, rubber, electronic, printing, etc. We also have years of technology accumulation in the research and manufacturing of flat steel processing line, and possess nearly 100 of application example.
Our company focus on the research, design, manufacturing, installation and commissioning of VOCs organic waste gas treatment system and the revamping and updating project for energy saving and environmental protection of flat steel processing line. We can provide customers the complete solutions for environmental protection, energy saving, product quality improvement and other aspects.
We are also engaged in various spares and independent equipment for color coating line, galvanizing line, pickling line, like roller, coupler, heat exchanger, recuperator, air knife, blower, welder, tension leveler, skin pass, expansion joint, shear, jointer, stitcher, burner, radiant tube, gear motor, reducer, etc.
Can regenerative thermal oxidizers be used for treating industrial wastewater?
No, regenerative thermal oxidizers (RTOs) are not typically used for treating industrial wastewater. RTOs are specifically designed for air pollution control and the treatment of gaseous pollutants, such as volatile organic compounds (VOCs) and hazardous air pollutants (HAPs).
Here are some key points to consider regarding the use of RTOs for treating industrial wastewater:
- Operating Principle: RTOs rely on the combustion of pollutants in the gas phase. They utilize high temperatures to thermally oxidize gaseous pollutants, converting them into carbon dioxide and water vapor. However, wastewater treatment involves the removal or transformation of contaminants dissolved or suspended in water, which requires different treatment mechanisms.
- Wastewater Treatment Technologies: Wastewater treatment typically involves processes such as physical separation, chemical treatment, biological treatment, and other specialized techniques depending on the nature of the contaminants. Common wastewater treatment technologies include activated sludge systems, sedimentation tanks, chemical precipitation, filtration, and various other methods tailored to specific wastewater characteristics.
- Environmental Regulations: Industrial wastewater treatment is subject to stringent environmental regulations and discharge standards that govern the quality of effluent released into water bodies. Compliance with these regulations requires the implementation of appropriate wastewater treatment technologies specifically designed for the removal or reduction of contaminants in water, rather than air pollution control technologies like RTOs.
- Integration with Wastewater Treatment Systems: While RTOs are not used for wastewater treatment, they may be integrated into overall industrial process systems where wastewater treatment is also required. In such cases, separate wastewater treatment technologies are employed to treat the wastewater, and RTOs are used to address air emissions resulting from the wastewater treatment process or other industrial operations.
In summary, regenerative thermal oxidizers are not suitable for treating industrial wastewater. They are designed for air pollution control and the destruction of gaseous pollutants. For effective wastewater treatment, industries should employ appropriate wastewater treatment technologies specifically designed for the removal or transformation of contaminants in water.
What are the typical construction materials used in regenerative thermal oxidizers?
Regenerative thermal oxidizers (RTOs) are constructed using various materials that can withstand the high temperatures, corrosive environments, and mechanical stresses encountered during operation. The choice of materials depends on factors such as the specific design, process conditions, and the types of pollutants being treated. Here are some typical construction materials used in RTOs:
- Heat Exchangers: The heat exchangers in RTOs are responsible for transferring heat from the outgoing exhaust gas to the incoming process air or gas stream. The construction materials for heat exchangers often include:
- Ceramic Media: RTOs commonly use structured ceramic media, such as ceramic monoliths or ceramic saddles. These materials have excellent thermal properties, high resistance to thermal shock, and good chemical resistance. Ceramic media provide a large surface area for efficient heat transfer.
- Metallic Media: Some RTO designs may incorporate metallic heat exchangers made from alloys such as stainless steel or other heat-resistant metals. Metallic media offer robustness and durability, particularly in applications with high mechanical stresses or corrosive environments.
- Combustion Chamber: The combustion chamber of an RTO is where the oxidation of pollutants takes place. The construction materials for the combustion chamber should be able to withstand the high temperatures and corrosive conditions. Commonly used materials include:
- Refractory Lining: RTOs often have refractory lining in the combustion chamber to provide thermal insulation and protection. Refractory materials, such as high-alumina or silicon carbide, are chosen for their high-temperature resistance and chemical stability.
- Steel or Alloys: The structural components of the combustion chamber, such as the walls, roof, and floor, are typically made of steel or heat-resistant alloys. These materials offer strength and stability while withstanding the high temperatures and corrosive gases.
- Ductwork and Piping: The ductwork and piping in an RTO transport the exhaust gas, process air, and auxiliary gases. The materials used for ductwork and piping depend on the specific requirements, but commonly used materials include:
- Mild Steel: Mild steel is often used for ductwork and piping in less corrosive environments. It provides strength and cost-effectiveness.
- Stainless Steel: In applications where corrosion resistance is crucial, stainless steel, such as 304 or 316 grades, may be used. Stainless steel offers excellent resistance to many corrosive gases and environments.
- Corrosion-Resistant Alloys: In highly corrosive environments, corrosion-resistant alloys like Hastelloy or Inconel may be employed. These materials provide exceptional resistance to a wide range of corrosive chemicals and gases.
- Insulation: Insulation materials are used to minimize heat loss from the RTO and ensure energy efficiency. Common insulation materials include:
- Ceramic Fiber: Ceramic fiber insulation offers excellent thermal resistance and low thermal conductivity. It is often used in RTOs to reduce heat loss and improve overall energy efficiency.
- Mineral Wool: Mineral wool insulation provides good thermal insulation and sound absorption properties. It is commonly used in RTOs to reduce heat loss and enhance safety.
It is important to note that the specific materials used in RTO construction may vary depending on factors such as the process requirements, temperature range, and corrosive nature of the gases being treated. Manufacturers of RTOs typically select appropriate materials based on their expertise and the specific application.
哪些行業常用蓄熱式熱氧化器?
蓄熱式熱氧化器 (RTO) 廣泛應用於產生揮發性有機化合物 (VOC)、有害空氣污染物 (HAP) 和其他有害排放物的各個產業。通常使用 RTO 進行空氣污染控制的一些行業包括:
- 化學品製造:RTO 廣泛應用於生產溶劑、油漆、塗料、黏合劑和其他化學產品的化學製造過程。這些行業經常產生大量的揮發性有機化合物,需要有效的控制和減排。
- 印刷和包裝:印刷和包裝行業利用 RTO 來控製油墨乾燥、塗佈和溶劑型製程中的 VOC 和 HAP 排放。 RTO 確保遵守環境法規,同時保持高品質的列印標準。
- 藥品:藥品製造過程通常涉及溶劑和有機化合物的使用,導致揮發性有機化合物的產生。 RTO 為捕捉和銷毀這些排放物提供了有效的解決方案,確保安全、環保的生產環境。
- 油漆和塗料:RTO 通常用於油漆和塗料生產設施,以控制固化和乾燥過程中的 VOC 排放。透過有效破壞 VOC,RTO 有助於減少這些產業對環境的影響,同時維持產品品質。
- 家具和木工:家具和木工行業利用 RTO 來控制噴漆、染色和清漆等工藝的排放。 RTO 有助於去除這些操作過程中產生的 VOC 和 HAP,促進更健康的工作環境並減少對周圍社區的影響。
- 食品加工:某些食品加工作業會產生揮發性有機化合物和有氣味的化合物。 RTO 在這些行業中用於捕獲和處理烹飪、烘焙、油炸和其他食品相關過程中的排放。 RTO 確保符合空氣品質標準,同時最大限度地減少對食品品質和安全的影響。
- 化學品儲存和處理:涉及化學品儲存和處理的設施,例如散裝液體終端和化學品配送中心,可以利用 RTO 來控制排放和蒸氣回收系統的排放。 RTO 有助於減少各種儲存和轉移作業過程中 VOC 和 HAP 的釋放。
這些只是幾個例子,RTO 可以在許多其他產生 VOC 和 HAP 的行業中找到。 RTO 為空氣污染控制提供了多功能且有效的解決方案,確保遵守環境法規並促進永續的工業實踐。
editor by CX 2024-04-09