基本訊息
Material
Cordierite
應用
Industry, Food and Beverage, Medicine, Textile, Metallurgy
類型
Ceramic Filter
Filter Connector
Flat Connector
Filtration Grade
ULPA Filter
Activated Carbon Filter Type
Bulk Type
商標
SW
運輸套餐
Carton
Specification
50x50x50, 100x100x50, 595x260x95
起源
China
HS Code
3815120090
產品描述
Description:;
Carrier:; Ceramic honeycomb substrate (cordierite monolith); or metal honeycomb substrate (stainless steel crust and Fe-Cr-Al honeycomb body);.;
Technical Data:;
Material:;Cordierite,; mullite ceramics
Size:;
50x50x50,;100x100x50,;595x260x95
Working Temperature:;220°C-1100°C
Channels:;Circular,; Square,; Rectangle
Cell Density:;
50-400 CPSI
Type:; Catalytic Converter
Usage:;
Catalytic Converter
Application:;Enameled wire,; paint room,; waste gas treatment industry.;
——————————————————————————————————————————————————
Regenerative Thermal/Catalytic Oxidizer (RTO/RCO); :;
Regenerated heat/catalytic oxidant (RTO/RCO);:; it is widely used in automotive coatings,; chemical industry,; electronic and electric manufacturing industry,; contact combustion system and other fields.;Ceramic honeycomb is designated as a structural regenerative medium for RTO/RCO.;
Advantage:;
1.; Various materials and specifications
2.; Products with different formulas can be customized according to customer requirements.;
3.; Small resistance loss
4.; Low thermal expansion coefficient
5.; Excellent crack resistance
6.; It can be customized to meet the emission standards of different countries.;
應用:;
1.; It can be used as a heat exchanger in the RTO of the heat recovery device.;
2.; Can be used as a catalyst to purify automobile exhaust and motorcycle exhaust to remove odor.;
3.; Applicable to food service industry,; environmental protection industry,; metallurgy industry,; etc
Test Equipment:;
Particle size distribution tester
Aperture and specific surface meter
Metal distribution,; crystalline structure
Catalyst activity evaluation system
Production Equipment:;
Coating continuous microwave drying system
Slurry nanometer grinding preparation system
Slurry quantitative spraying system
RFQ:;
Q:;Are you a trading company or a manufacturer?
A:;We are professional manufacturer which has almost 20 years of experience in this industry.;
Q:;Can you produce according to the samples?
A:;Yes,;we can produce by your samples or technical drawings.;
Q:;Would it be possible for us to visit your factory?
A:;Sure,;we welcomed our customers visit our factory in any time.;
Q:;Will your company supply samples?
A:;Yes,;the sample expense will be deducted from the value of your order.;
Q:;What’s your payment terms?
A:;T/T,; L/C,; Western Union,; Money Gram,; are available for us.;
Q:;Delivery time for my order?
A:;Within 7-15 working days for your sample order; 20 working days for your bulk order( It depends on the models and quantity you are going to order);.;
Address: Room. 3902-2 TianAn CHINAMFG Town No. 228 Ling Lake Avenue, New Wu District, HangZhou City, ZheJiang Province, China.
Business Type: Manufacturer/Factory, Group Corporation
Business Range: Auto, Motorcycle Parts & Accessories, Chemicals, Industrial Equipment & Components, Manufacturing & Processing Machinery
Management System Certification: ISO 9001, ISO 14001, ISO 20000, IATF16949
Main Products: Honeycomb Catalytic, Three Way Catalytic, Chemical Catalytic, Exhaust Filter, Industrial Catalytic
Company Introduction: Established in 2003, Sheung Well International Corp. Is a professional enterprise specialized in developing, manufacturing, selling automotive vehicles, Universal fuel engine and industrial three-way catalyst and converters, four-way converters. With independent intellectual property rights, its technology has been approved by ISO9001, TS16949 quality and management systems.
Sheung Well is an all-round designer and manufacturer who has a innovative and quality managing team mainly consists of doctorates and masters. Based on its cutting edge technology, rich experience and modern production and quality management skills, CHINAMFG is providing customers with first-class products and services.
Oriented in market, with innovation as its soul, centralized in serving the society, CHINAMFG lays emphasis on developing technology and products of controlling Exhaust emissions and other industrial catalysts. By providing customers with technology and supports of new products, it is committed to becoming the word-class all-around enterprise in catalyst circle from home and abroad.
Are regenerative thermal oxidizers suitable for controlling particulate matter emissions?
Regenerative thermal oxidizers (RTOs) are primarily designed for the destruction of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). While RTOs are highly effective in treating gaseous pollutants, they are not specifically designed for controlling particulate matter emissions.
Here are some key points to consider regarding the suitability of RTOs for controlling particulate matter emissions:
- Particulate Matter (PM) Removal Mechanism: RTOs primarily operate based on the thermal oxidation of pollutants. They rely on high temperatures to break down and destroy gaseous pollutants, but they do not have a dedicated mechanism for capturing and removing particulate matter. The design of RTOs does not incorporate features such as filters or electrostatic precipitators that are commonly used for effective particulate matter control.
- Limited Particulate Matter Destruction: While RTOs can provide some incidental removal of fine particulate matter through mechanisms like thermal decomposition and agglomeration, the removal efficiency for particulate matter is generally low compared to dedicated particulate control devices. The focus of RTOs is primarily on the destruction of gaseous pollutants rather than the capture and removal of particulates.
- Supplementary Particulate Control: In certain cases, supplementary particulate control devices may be integrated with RTOs to address particulate matter emissions. These devices, such as bag filters or electrostatic precipitators, can be installed downstream of the RTO to capture and remove particulates. This combination of an RTO with a separate particulate control device can help achieve comprehensive air pollution control for both gaseous pollutants and particulate matter.
- Consideration of Particulate Characteristics: When evaluating the suitability of RTOs for a specific application involving particulate matter emissions, it is crucial to consider the characteristics of the particulates, such as size, composition, and concentration. RTOs may be more effective in controlling certain types of coarse particulates compared to fine or ultrafine particulate matter.
- Alternative Technologies: For industries with significant particulate matter emissions, other air pollution control technologies specifically designed for particulate removal, such as fabric filters (baghouses), electrostatic precipitators, or wet scrubbers, may be more suitable and efficient.
In summary, while regenerative thermal oxidizers are highly effective for the destruction of gaseous pollutants, they are not specifically designed for controlling particulate matter emissions. If particulate matter control is a significant concern, supplementary particulate control devices or alternative technologies should be considered to ensure comprehensive air pollution control.
Are regenerative thermal oxidizers safe to operate?
Regenerative thermal oxidizers (RTOs) are designed with safety considerations to ensure their safe operation. When properly installed, operated, and maintained, RTOs provide a high level of safety. Here are some key points regarding the safety of operating RTOs:
- Combustion and Fire Safety: RTOs are designed to safely combust and destroy volatile organic compounds (VOCs) and other pollutants in the exhaust stream. They incorporate various safety features to prevent the risk of uncontrolled fires or explosions. These features may include flame arrestors, temperature sensors, pressure relief devices, and automated shutdown systems to ensure safe operation in the event of abnormal operating conditions.
- Control and Monitoring Systems: RTOs are equipped with advanced control and monitoring systems that continuously monitor various parameters such as temperature, pressure, and flow rates. These systems provide real-time data to operators, allowing them to detect any deviations from normal operating conditions promptly. Alarms and safety interlocks are often included to alert operators and initiate appropriate actions in case of abnormal situations.
- Heat Recovery and Thermal Efficiency: RTOs are designed to maximize thermal efficiency by recovering and reusing heat generated during the oxidization process. This reduces the overall energy consumption and minimizes the risk of heat buildup within the system, contributing to safe operation and preventing excessive temperatures that could pose safety hazards.
- Equipment and Material Selection: RTOs are constructed using materials that can withstand the high temperatures and corrosive conditions encountered during operation. Heat-resistant materials, such as ceramic beds or metallic heat exchangers, are commonly used. Proper material selection ensures the integrity and longevity of the equipment, reducing the risk of failures or leaks that could compromise safety.
- Compliance with Standards and Regulations: RTOs must comply with applicable safety standards and regulations. These standards define specific requirements for the design, installation, operation, and maintenance of air pollution control systems, including RTOs. Compliance with these standards ensures that the RTOs meet the necessary safety criteria and helps safeguard the health and well-being of personnel and the surrounding environment.
- Operator Training and Maintenance: Adequate operator training and regular maintenance are crucial for safe RTO operation. Operators should receive comprehensive training on the system’s operation, safety procedures, and emergency response protocols. Additionally, routine maintenance and inspections help identify and address any potential safety concerns or equipment issues before they escalate.
While RTOs are generally safe to operate, it is essential to follow the manufacturer’s guidelines, maintain proper safety protocols, and adhere to applicable regulations to ensure safe and reliable operation.
蓄熱式熱氧化器如何運作?
A regenerative thermal oxidizer (RTO) operates through a cyclical process that involves several key steps. Here’s a detailed explanation of how an RTO works:
1. 進氣靜壓室: 含有污染物的廢氣經由入口靜壓室進入 RTO。
2. 熱交換器床: RTO 包含多個裝有儲熱介質(通常是陶瓷材料或規則填料)的熱交換器床。熱交換器床成對佈置。
3.流量控制閥: 流量控制閥引導氣流並控制廢氣通過 RTO 的方向。
4、燃燒室: 現在引導進入燃燒室的廢氣被加熱到高溫,通常在 1400°F (760°C) 和 1600°F (870°C) 之間。此溫度範圍確保污染物的有效熱氧化。
5.VOC破壞: The high temperature in the combustion chamber causes the volatile organic compounds (VOCs) and other contaminants to react with oxygen, resulting in their thermal decomposition or oxidation. This process breaks down the pollutants into water vapor, carbon dioxide, and other harmless gases.
6.熱回收: 離開燃燒室的熱淨化氣體穿過出口靜壓室並流經處於相反操作階段的熱交換器床。床中的儲熱介質吸收排出氣體的熱量,從而預熱進入的廢氣。
7.循環切換: 經過特定的時間間隔後,流量控制閥會切換氣流方向,使預熱進入氣體的熱交換器床現在接收來自燃燒室的熱氣體。然後重複該循環,確保連續高效的運作。
蓄熱式熱氧化器的優點:
RTO 在工業空氣污染控制方面具有多種優勢:
1、效率高: RTO 可以實現很高的破壞效率,通常高於 95%,有效去除多種污染物。
2.能量回收: RTO 中的熱回收機制可以顯著節省能源。進入氣體的預熱減少了燃燒所需的燃料消耗,使 RTO 更節能。
3、性價比: 儘管 RTO 的初始資本投資可能很大,但透過能量回收和高銷毀效率節省的長期營運成本使其成為整個系統生命週期內具有成本效益的解決方案。
4. 環境合規性: RTO 旨在滿足嚴格的排放法規,並協助各行業遵守空氣品質標準和許可證。
5. 多功能性: RTO 可以處理各種製程廢氣量和污染物濃度,使其適用於各種工業應用。
總體而言,蓄熱式熱氧化器透過利用熱回收、高溫燃燒和循環流量控制來有效氧化污染物並實現高破壞效率,同時最大限度地降低能耗。
editor by CX 2024-03-25