Yandex Metrika

基本訊息

型號

Amazing RTO

類型

Incinerator

High Efficiency

100

Energy Saving

100

Low Maintenance

100

Easy Operation

100

商標

Bjamazing

運輸套餐

Overseas

Specification

111

起源

China

HS Code

2221111

產品描述

RTO

蓄熱式熱氧化器

Compared with traditional catalytic combustion,; direct thermal oxidizer,; RTO has the merits of high heating efficiency,; low operation cost,; and the ability to treat large flux low concentration waste gas.; When VOCs concentration is high,; secondary heat recycle can be realized,; which will greatly reduce the operation cost.; Because RTO can preheat the waste gas by levels through ceramic heat accumulator,; which could make the waste gas to be completely heated and cracked with no dead corner(treatment efficiency>99%);,;which reduce the NOX in the Exhausting gas,; if the VOC density >1500mg/Nm3,; when the waste gas reach cracking area,; it has been heated up to cracking temperature by heat accumulator,; the burner will be closed under this condition.;

RTO can be devided into chamber type and rotary type according to difference operation mode.; Rotary type RTO has advantages in system pressure,; temperature stability,; investment amount,; etc

RTO types  EfficiencyPressure change
(mmAq);
尺寸(max);Treatment volume  
 
Treatment efficiency Heat recycle efficiency  
Rotary type RTO99 %97 %0-4small
(1 time);
50000Nm3/h  
Three chamber type RTO99 %97 %  0-10Large
(1.;5times);
100000Nm3/h
Two chamber type RTO95 %95 %0-20middle
(1.;2times);
100000Nm3/h  

Regenerative Thermal Oxidizer,; Regenerative Thermal Oxidizer,; Regenerative Thermal Oxidizer,;  Thermal Oxidizer,; Thermal Oxidizer,; Thermal Oxidizer,; oxidizer,; oxidizer,; oxidizer,; incinerator,; incinerator,; incinerator,; waste gas treatment,; waste gas treatment,; waste gas treatment,; VOC treatment,; VOC treatment,; VOC treatment,; RTO,; RTO,; RTO,; Rotary RTO,; Rotary RTO,; Rotary RTO,; Chamber RTO,; Chamber RTO,; Chamber RTO

Address: 8 floor, E1, Pinwei building, Dishengxi road, Yizhuang, ZheJiang , China

業務類型: 製造商/工廠, 貿易公司

Business Range: Electrical & Electronics, Industrial Equipment & Components, Manufacturing & Processing Machinery, Metallurgy, Mineral & Energy

Management System Certification: ISO 9001, ISO 14001

Main Products: Rto, Color Coating Line, Galvanizing Line, Air Knife, Spares for Processing Line, Coater, Independent Equipments, Sink Roll, Revamping Project, Blower

Company Introduction: ZheJiang Amazing Science & Technology Co., Ltd is a thriving Hi-tech company, located in ZheJiang Economic and Technological Development Area(BDA). Adhering to the concept of Realistic, Innovative, Focused and Efficient, our company mainly serve the waste gas treatment (VOCs) Industry and metallurgical equipment of China and even whole world. We have advanced technology and rich experience in VOCs waste gas treatment project, the reference of which has been successfully applied to the industry of coating, rubber, electronic, printing, etc. We also have years of technology accumulation in the research and manufacturing of flat steel processing line, and possess nearly 100 of application example.

Our company focus on the research, design, manufacturing, installation and commissioning of VOCs organic waste gas treatment system and the revamping and updating project for energy saving and environmental protection of flat steel processing line. We can provide customers the complete solutions for environmental protection, energy saving, product quality improvement and other aspects.

We are also engaged in various spares and independent equipment for color coating line, galvanizing line, pickling line, like roller, coupler, heat exchanger, recuperator, air knife, blower, welder, tension leveler, skin pass, expansion joint, shear, jointer, stitcher, burner, radiant tube, gear motor, reducer, etc.

蓄熱式熱氧化器

How much energy can be recovered by a regenerative thermal oxidizer?

The amount of energy that can be recovered by a regenerative thermal oxidizer (RTO) depends on several factors, including the design of the RTO system, the operating conditions, and the specific characteristics of the exhaust gases being treated. Generally, RTOs are known for their high energy recovery efficiency, and they can recover a significant portion of the thermal energy from the exhaust gases.

Here are some key factors that influence the energy recovery potential of an RTO:

  • Heat Recovery System: The design and efficiency of the heat recovery system in the RTO significantly impact the amount of energy that can be recovered. RTOs typically use ceramic media beds or heat exchangers to capture and transfer heat between the exhaust gases and the incoming untreated gases. Well-designed heat exchangers with a large surface area and good thermal conductivity can enhance the energy recovery efficiency.
  • Temperature Differential: The temperature difference between the exhaust gases and the incoming untreated gases affects the energy recovery potential. The greater the temperature differential, the higher the potential for energy recovery. RTOs operating at higher temperature differentials can recover more energy compared to those with smaller differentials.
  • Flow Rates and Heat Capacity: The flow rates of the exhaust gases and incoming untreated gases, as well as their respective heat capacities, are important factors in determining the energy recovery capability. Higher flow rates and larger heat capacities result in more heat available for recovery.
  • Process Specifics: The specific characteristics of the industrial process and the composition of the exhaust gases being treated can influence the energy recovery potential. For example, exhaust gases with high concentrations of volatile organic compounds (VOCs) or other combustible components can provide a higher energy recovery potential.
  • Efficiency and System Optimization: The efficiency of the RTO system itself, including the combustion chamber, heat exchangers, and control mechanisms, also plays a role in the energy recovery. Well-maintained and optimized RTO systems can maximize the energy recovery potential.

While it is challenging to provide an exact numerical value for the energy recovery potential of an RTO, it is not uncommon for RTOs to achieve energy recovery efficiencies in the range of 90% or higher. This means that they can recover and reuse 90% or more of the thermal energy contained in the exhaust gases, significantly reducing the need for external fuel sources.

It’s important to note that the actual energy recovery achieved by an RTO will depend on the specific operating conditions, pollutant concentrations, and other factors mentioned above. Consulting with RTO manufacturers or conducting a detailed energy analysis can provide more accurate estimations of the energy recovery potential for a particular RTO system.

蓄熱式熱氧化器

How do regenerative thermal oxidizers handle variations in pollutant composition?

Regenerative thermal oxidizers (RTOs) are designed to handle variations in pollutant composition effectively. RTOs are commonly used for treating volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) emitted from various industrial processes. Here are some key points regarding how RTOs handle variations in pollutant composition:

  • Thermal Oxidation Process: RTOs utilize a thermal oxidation process to eliminate pollutants. The process involves raising the temperature of the exhaust gas to a level where the pollutants react with oxygen and are oxidized to carbon dioxide (CO2) and water vapor. This high-temperature oxidation process is effective in treating a wide range of pollutants, regardless of their specific composition.
  • Wide Range of Pollutant Compatibility: RTOs are designed to handle a broad spectrum of pollutants, including VOCs and HAPs with varying chemical compositions. The high operating temperatures in the RTO, typically between 1400°F to 1600°F (760°C to 870°C), ensure that a wide range of organic compounds can be effectively oxidized, regardless of their molecular structure or chemical makeup.
  • Residence Time and Dwell Time: RTOs provide sufficient residence time and dwell time for the exhaust gas within the oxidizer. The exhaust gas is directed through a heat exchange system, where it passes through ceramic media beds or heat exchange media. These media beds absorb the heat from the high-temperature combustion chamber and transfer it to the incoming exhaust gas. The extended residence time and dwell time ensure that even complex or less reactive pollutants have enough contact time with the elevated temperature to be effectively oxidized.
  • 熱回收: RTOs incorporate heat recovery systems that maximize thermal efficiency. The heat exchangers within the RTO capture and transfer heat from the outgoing exhaust gas to the incoming process stream. This heat exchange process helps maintain the high operating temperatures required for effective pollutant destruction while minimizing the energy consumption of the system. The ability to recover and reuse heat also contributes to the RTO’s ability to handle variations in pollutant composition.
  • Advanced Control Systems: RTOs employ advanced control systems to monitor and optimize the oxidation process. These control systems continuously monitor parameters such as temperature, flow rates, and pollutant concentrations. By adjusting the operating conditions in response to variations in pollutant composition, the control systems ensure optimal performance and maintain high destruction efficiencies.

In summary, RTOs handle variations in pollutant composition by utilizing a thermal oxidation process, accommodating a wide range of pollutants, providing sufficient residence time and dwell time, incorporating heat recovery systems, and employing advanced control systems. These features allow RTOs to effectively treat emissions with different pollutant compositions, ensuring high destruction efficiencies and compliance with environmental regulations.

蓄熱式熱氧化器

蓄熱式熱氧化器如何運作?

蓄熱式熱氧化器 (RTO) 是一種先進的空氣污染控制裝置,可透過循環過程去除廢氣中的揮發性有機化合物 (VOC)、有害空氣污染物 (HAP) 和其他空氣污染物。以下是 RTO 工作原理的詳細說明:

1. 進氣靜壓室: 含有污染物的廢氣經由入口靜壓室進入 RTO。

2. 熱交換器床: RTO 包含多個裝有儲熱介質(通常是陶瓷材料或規則填料)的熱交換器床。熱交換器床成對佈置。

3.流量控制閥: 流量控制閥引導氣流並控制廢氣通過 RTO 的方向。

4、燃燒室: 現在引導進入燃燒室的廢氣被加熱到高溫,通常在 1400°F (760°C) 和 1600°F (870°C) 之間。此溫度範圍確保污染物的有效熱氧化。

5.VOC破壞: 燃燒室中的高溫導致揮發性有機化合物和其他污染物與氧氣反應,導致其熱分解或氧化。這個過程將污染物分解成水蒸氣、二氧化碳和其他無害氣體。

6.熱回收: 離開燃燒室的熱淨化氣體穿過出口靜壓室並流經處於相反操作階段的熱交換器床。床中的儲熱介質吸收排出氣體的熱量,從而預熱進入的廢氣。

7.循環切換: 經過特定的時間間隔後,流量控制閥會切換氣流方向,使預熱進入氣體的熱交換器床現在接收來自燃燒室的熱氣體。然後重複該循環,確保連續高效的運作。

蓄熱式熱氧化器的優點:

RTO 在工業空氣污染控制方面具有多種優勢:

1、效率高: RTO 可以實現很高的破壞效率,通常高於 95%,有效去除多種污染物。

2.能量回收: RTO 中的熱回收機制可以顯著節省能源。進入氣體的預熱減少了燃燒所需的燃料消耗,使 RTO 更節能。

3、性價比: 儘管 RTO 的初始資本投資可能很大,但透過能量回收和高銷毀效率節省的長期營運成本使其成為整個系統生命週期內具有成本效益的解決方案。

4. 環境合規性: RTO 旨在滿足嚴格的排放法規,並協助各行業遵守空氣品質標準和許可證。

5. 多功能性: RTO 可以處理各種製程廢氣量和污染物濃度,使其適用於各種工業應用。

總體而言,蓄熱式熱氧化器透過利用熱回收、高溫燃燒和循環流量控制來有效氧化污染物並實現高破壞效率,同時最大限度地降低能耗。

China factory Rto/Regenerative Thermal Oxidizer
editor by CX 2024-03-11

zh_TWZH_TW