Basic Info.

Model NO.

RTO

Type

Environmental Monitoring Instrument

Main Function

Waste Gases Removal

Application

Chemical Industry

Brand

Raidsant

Clean Efficeincy

99.8%

Condition

New

Trademark

Raidsant

Transport Package

Film Wrapped

Origin

ZheJiang China

Product Description

HangZhou Raidsant Machinery Co.;,; Ltd.; is majored in developing and manufacturing innovativepowder cooling pelletizing machinery and related industrial waste gas treatment machine.; With nearly 20 years’ production history,; we have a good market in more than 20 provinces in China,; and some of our products were exported to Saudi Arabia,;Singapore,;Mexico,; Brazil,;Spain,; America,; Russia and Korea,; etc.;

Specifications:;

* More compact than the existing facilities 
* Low-operation costs 
* Long lifespan of facilities 
* No changes in pressure

Purpose:;

Energy-saving system that burns volatile organic compound (VOC); and waste gas by using heat,; and it collects over 99.;8% of waste heat of exhaust gas by using ceramic regenerative materials (catalyst); with large surface area and low-pressure loss.;

Applications:;

1.; Painting drying process
2.; metal printing process
3.; fiber drying process
4.; adhesive tape process
5.; waste treatment process
6.; semiconductor manufacturing process
7.; smoke,; confectionary and baking process
8.; petrochemical process,; 
9.; medicine and food manufacturing process,; 
10.; other VOC generating process

Merits:;

 *   More compact than the existing facilities
 *   No changes in pressure
 *   High-heat recovery rate (over 95%);
 *   Perfect VOC treatment (over 99.;8%);
  *  Long lifespan of facilities
  *  Low-operation costs
  *  Able to be manufactured in circle or quadrangle

General Descriptions and Features:; 

1.; Operating principle
 Operation method that continuously changing discharges by rotating the Rotary Valve

2.; Process Pressure Change
  No pressure change because wind direction changes in order by the Rotary Valve rotation

3.; Investment Costs
 Around 70% of Bed Type

4.; Installation Space
 It is single vessel so it is compact and requires less installation space.;

5.; Maintenance
 It is easy to maintain it because Rotary Valve is the only 1 moving part.;
 Rotary Valve’s sealing part is rarely worn out because it rotates at low speed.;

6.; Stability
No risks in the process because it is always opened even when the Rotary Valve has troubles.;

7.; Treatment Efficiency
 Treatment efficiency maintains because sealing part is rarely worn out even if it is operated for a long time.;

 

Address: No.3,Zhenxin Middle Road, Economic Development Zone,HangZhou,ZheJiang

Business Type: Manufacturer/Factory, Trading Company

Business Range: Chemicals, Electrical & Electronics, Manufacturing & Processing Machinery, Security & Protection

Management System Certification: ISO 9001

Main Products: Pelletizer, Flaker, Pastillator, Granulator, Chemical Pelletizer, Vocs

Company Introduction: HangZhou Raidsant Machinery Co., Ltd. ., previously called HangZhou Xinte Plastic Machinery Factory is majored in producing innovative plastic recycling machinery. With nearly 20 years′ experience, we have a good market in 20 provinces in China, and some of our products were exported to Indonesia, Russia and Vietnam, etc. Our main products include DZ Type Pastillator, waste tire recycling line, Big Calibre Plastic Pipe shredders recycling line, continuous annealing tin-coation machine, QX type PET, PE & hull washing line, SDP double rails plastic recycling crusher, SJ hot cutting granule making unit, PVC tube (cinquefoil) product line, PVC Odd-shaped material product line for door and window, granule product line in water and Shredder for plastics and recycling. We acquired 5 technical patents.

Our corpotation lays emphsis on thchnical reconstruction, imports advanced technology from home and abroad, and develops new products constantly. Our tenet is challenging for hight quality, offering the best products. We are making efforts to realize our slogan. Satisfying our customers is our everlasting pursuit.

We are looking for the oversea customers or agents. If you are interested in our proposal, please let us know which of our products is the most likely to appeal to you or your customers. We should be very grateful if you give us some ideas of the marketprospects for our products. We hope to hear favorable information from you soon! It is our goal that we wish we could buid a good relationship with you now or in the near future. Please do not hesitate to contact us if you have any question or request.

We also sincerely welcome you to our company to discuss business and negotiate with us. For further expanding our market and customers, our company welcomes customer from domestic and aboard in an new-brand gesture on the basis of full-new mangement conception—quality, honour, service. We are looking for ISO 90001 mangement quality system to meet with our customers requirement!

regenerative thermal oxidizers

What is the difference between a regenerative thermal oxidizer and a thermal oxidizer?

A regenerative thermal oxidizer (RTO) and a thermal oxidizer are both types of air pollution control devices used for the treatment of volatile organic compounds (VOCs) and other air pollutants. While they share the same purpose, there are distinct differences between the two technologies.

Here are the key differences between a regenerative thermal oxidizer and a thermal oxidizer:

  • Operating Principle: The fundamental difference lies in the operating principle. A thermal oxidizer operates by using high temperature alone to oxidize and destroy pollutants. It typically relies on a burner or other heat sources to raise the temperature of the exhaust gases to the required level for combustion. In contrast, an RTO utilizes a regenerative heat exchanger system to preheat the incoming exhaust gases by capturing and transferring heat from the outgoing gases. This heat exchange mechanism significantly improves the overall energy efficiency of the system.
  • Heat Recovery: Heat recovery is a distinctive feature of an RTO. The regenerative heat exchanger in an RTO allows for the recovery of a significant amount of heat from the outgoing gases. This recovered heat is then used to preheat the incoming gases, reducing the energy consumption of the system. In a typical thermal oxidizer, heat recovery is limited or absent, resulting in higher energy requirements.
  • Energy Efficiency: Due to the heat recovery mechanism, RTOs are generally more energy-efficient compared to traditional thermal oxidizers. The regenerative heat exchanger in an RTO allows for thermal efficiencies of 95% or higher, meaning that a significant portion of the energy input is recovered and utilized within the system. Thermal oxidizers, on the other hand, typically have lower thermal efficiencies.
  • Operating Costs: The higher energy efficiency of RTOs translates into lower operating costs over the long term. The reduced energy consumption can result in significant savings in fuel or electricity expenses compared to thermal oxidizers. However, the initial capital investment for an RTO is generally higher than that of a thermal oxidizer due to the complexity of the regenerative heat exchanger system.
  • Control of Pollutant Concentrations: RTOs are better suited for handling variable pollutant concentrations compared to thermal oxidizers. The regenerative heat exchanger system in an RTO allows for better control and adjustment of operating parameters to accommodate fluctuations in pollutant concentrations. Thermal oxidizers are typically less adaptable to varying pollutant loads.

In summary, the main differences between a regenerative thermal oxidizer and a thermal oxidizer lie in the operating principle, heat recovery capabilities, energy efficiency, operating costs, and control of pollutant concentrations. RTOs offer higher energy efficiency, better control of pollutant concentrations, and lower operating costs, but they require a higher initial investment compared to traditional thermal oxidizers.

regenerative thermal oxidizers

Can regenerative thermal oxidizers be used for treating emissions from wood processing operations?

Yes, regenerative thermal oxidizers (RTOs) can be used effectively for treating emissions from wood processing operations. Wood processing operations, such as sawmills, veneer production, and wood product manufacturing, can generate various pollutants, including volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). Here are some key points regarding the use of RTOs for treating emissions from wood processing operations:

  • Emission Control: RTOs are designed to achieve high destruction efficiencies for VOCs and HAPs. These pollutants are oxidized within the RTO at high temperatures, typically above 95% efficiency, converting them into carbon dioxide (CO2) and water vapor. This ensures effective control and reduction of emissions from wood processing operations.
  • Process Compatibility: RTOs can be integrated into the exhaust systems of various wood processing operations, capturing and treating the emissions before they are released into the atmosphere. The RTO is typically connected to the process equipment or exhaust stack, allowing the VOC-laden air to pass through the oxidizer for treatment.
  • Flexibility: RTOs offer flexibility in handling a wide range of operating conditions and pollutants. Wood processing operations can vary in terms of flow rates, temperature, and composition of emissions. RTOs are designed to accommodate these variations and provide effective treatment even under fluctuating conditions.
  • Particulate Removal: Wood processing operations may also generate particulate matter, such as wood dust or sawdust. While RTOs are primarily designed for treating gaseous pollutants, they can be complemented with additional particulate control devices, such as cyclones or fabric filters, to address particulate emissions and ensure compliance with air quality standards.
  • Heat Recovery: RTOs incorporate heat exchange systems that allow for the recovery and reuse of thermal energy. The heat exchangers within the RTO capture the heat from the outgoing exhaust gases and transfer it to the incoming process air or gas stream. This heat recovery process improves the overall energy efficiency of the system and reduces the need for additional fuel consumption.
  • Compliance with Regulations: Wood processing operations are subject to regulatory requirements for air quality and emissions control. RTOs are capable of achieving the necessary destruction efficiencies and can help wood processors comply with environmental regulations. The use of RTOs demonstrates a commitment to sustainable practices and responsible management of air emissions.

It is important to note that the specific design and configuration of the RTO, as well as the characteristics of the wood processing emissions, should be considered when implementing an RTO for a specific application. Consulting with experienced engineers or RTO manufacturers can provide valuable insights into the proper sizing, integration, and performance requirements for treating emissions from wood processing operations.

In summary, RTOs are a suitable and effective technology for treating emissions from wood processing operations, providing high destruction efficiencies, compatibility with various processes, flexibility in handling operating conditions, potential for particulate removal, heat recovery, and compliance with environmental regulations.

regenerative thermal oxidizers

How do regenerative thermal oxidizers compare to other air pollution control devices?

Regenerative thermal oxidizers (RTOs) are highly regarded air pollution control devices that offer several advantages over other commonly used air pollution control technologies. Here’s a comparison of RTOs with some other air pollution control devices:

ComparisonRegenerative Thermal Oxidizers (RTOs)Electrostatic Precipitators (ESPs)Scrubbers
EfficiencyRTOs achieve high VOC destruction efficiency, typically exceeding 99%. They are highly effective in destroying volatile organic compounds (VOCs) and hazardous air pollutants (HAPs).ESPs are effective in collecting particulate matter, such as dust and smoke, but they are less effective in destroying VOCs and HAPs.Scrubbers are efficient in removing certain pollutants, such as gases and particulate matter, but their performance may vary depending on the specific pollutants being targeted.
ApplicabilityRTOs are suitable for a wide range of industries and applications, including high-volume exhaust gases. They can handle varying concentrations and types of pollutants.ESPs are commonly used for particulate matter control in applications such as power plants, cement kilns, and steel mills. They are less suitable for VOC and HAP control.Scrubbers are widely used for removing acid gases, such as sulfur dioxide (SO2) and hydrogen chloride (HCl), as well as certain odorous compounds. They are often employed in industries such as chemical manufacturing and wastewater treatment.
Energy EfficiencyRTOs incorporate heat recovery systems that allow for significant energy savings. They can achieve high thermal efficiency by preheating the incoming process air using the heat from the outgoing exhaust stream.ESPs consume relatively low energy compared to other technologies, but they do not offer heat recovery capabilities.Scrubbers generally consume more energy compared to RTOs and ESPs due to the energy required for liquid atomization and pumping. However, some scrubber designs may incorporate heat recovery mechanisms.
Space RequirementsRTOs typically require more space compared to ESPs and certain scrubber designs due to the need for ceramic media beds and larger combustion chambers.ESPs have a compact design and require less space compared to RTOs and some scrubber configurations.Scrubber designs vary in size and complexity. Certain scrubber types, such as packed bed scrubbers, may require a larger footprint compared to RTOs and ESPs.
MaintenanceRTOs generally require regular maintenance of components such as valves, dampers, and ceramic media beds. Periodic media replacement may be necessary depending on the operating conditions.ESPs require periodic cleaning of collection plates and electrodes. Maintenance activities involve the removal of accumulated particulate matter.Scrubbers require maintenance of liquid circulation systems, pumps, and mist eliminators. Regular monitoring and adjustment of the chemical reagents used in the scrubbing process are also necessary.

It’s important to note that the selection of an air pollution control device depends on the specific pollutants, process conditions, regulatory requirements, and economic considerations of the industrial application. Each technology has its own advantages and limitations, and it’s essential to evaluate these factors to determine the most appropriate solution for effective air pollution control.

China Hot selling Regenerative Thermal Oxidizer
editor by CX 2024-01-24

sk_SKSK