Basic Info.
Model NO.
Amazing RTO
Typ
Incinerator
Energy Saving
100
Easy for Operation
100
High Efficiency
100
Less Maintenance
100
Trademark
Bjamazing
Transport Package
Overseas Wooden
Specification
180*24
Origin
China
HS Code
8416100000
Product Description
RTO
Regeneračný tepelný oxidátor
Compared with traditional catalytic combustion,; direct thermal oxidizer,; RTO has the merits of high heating efficiency,; low operation cost,; and the ability to treat large flux low concentration waste gas.; When VOCs concentration is high,; secondary heat recycle can be realized,; which will greatly reduce the operation cost.; Because RTO can preheat the waste gas by levels through ceramic heat accumulator,; which could make the waste gas to be completely heated and cracked with no dead corner(treatment efficiency>99%);,;which reduce the NOX in the Exhausting gas,; if the VOC density >1500mg/Nm3,; when the waste gas reach cracking area,; it has been heated up to cracking temperature by heat accumulator,; the burner will be closed under this condition.;
RTO can be devided into chamber type and rotary type according to difference operation mode.; Rotary type RTO has advantages in system pressure,; temperature stability,; investment amount,; etc
RTO types | Efficiency | Pressure change (mmAq); | Size | (max);Treatment volume | |
Treatment efficiency | Heat recycle efficiency | ||||
Rotary type RTO | 99 % | 97 % | 0-4 | small(1 time); | 50000Nm3/h |
Three chamber type RTO | 99 % | 97 % | 0-10 | Large (1.;5times); | 100000Nm3/h |
Two chamber type RTO | 95 % | 95 % | 0-20 | middle(1.;2times); | 100000Nm3/h |
Regenerative Thermal Oxidizer,; Regenerative Thermal Oxidizer,; Regenerative Thermal Oxidizer,; Thermal Oxidizer,; Thermal Oxidizer,; Thermal Oxidizer,; oxidizer,; oxidizer,; oxidizer,; incinerator,; incinerator,; incinerator,; waste gas treatment,; waste gas treatment,; waste gas treatment,; VOC treatment,; VOC treatment,; VOC treatment,; RTO,; RTO,; RTO,; RTO,; RTO,; RTO
Address: 8 floor, E1, Pinwei building, Dishengxi road, Yizhuang, ZheJiang , China
Business Type: Manufacturer/Factory, Trading Company
Business Range: Electrical & Electronics, Industrial Equipment & Components, Manufacturing & Processing Machinery, Metallurgy, Mineral & Energy
Management System Certification: ISO 9001, ISO 14001
Main Products: Rto, Color Coating Line, Galvanizing Line, Air Knife, Spares for Processing Line, Coater, Independent Equipments, Sink Roll, Revamping Project, Blower
Company Introduction: ZheJiang Amazing Science & Technology Co., Ltd is a thriving Hi-tech company, located in ZheJiang Economic and Technological Development Area(BDA). Adhering to the concept of Realistic, Innovative, Focused and Efficient, our company mainly serve the waste gas treatment (VOCs) Industry and metallurgical equipment of China and even whole world. We have advanced technology and rich experience in VOCs waste gas treatment project, the reference of which has been successfully applied to the industry of coating, rubber, electronic, printing, etc. We also have years of technology accumulation in the research and manufacturing of flat steel processing line, and possess nearly 100 of application example.
Our company focus on the research, design, manufacturing, installation and commissioning of VOCs organic waste gas treatment system and the revamping and updating project for energy saving and environmental protection of flat steel processing line. We can provide customers the complete solutions for environmental protection, energy saving, product quality improvement and other aspects.
We are also engaged in various spares and independent equipment for color coating line, galvanizing line, pickling line, like roller, coupler, heat exchanger, recuperator, air knife, blower, welder, tension leveler, skin pass, expansion joint, shear, jointer, stitcher, burner, radiant tube, gear motor, reducer, etc.
Can regenerative thermal oxidizers be used for odor control in sewage treatment plants?
Regenerative thermal oxidizers (RTOs) are not commonly used for odor control in sewage treatment plants. While RTOs are effective in controlling gaseous pollutants, their application for odor control in wastewater treatment facilities has certain limitations and considerations.
Here are some key points to consider regarding the use of RTOs for odor control in sewage treatment plants:
- Nature of Odorous Compounds: Odors in sewage treatment plants are primarily caused by volatile organic compounds (VOCs) and sulfur compounds released during the treatment processes. RTOs are effective in treating VOCs, but they may not be specifically designed to address sulfur compounds, which can be challenging to control through thermal oxidation.
- Operating Temperature: RTOs require high operating temperatures for efficient pollutant destruction. However, the presence of sulfur compounds in sewage treatment plant emissions can lead to corrosion and fouling at elevated temperatures, potentially impacting the performance and lifespan of the RTO system.
- Complex Odor Mixture: Odors in sewage treatment plants are often complex mixtures of various compounds. RTOs are generally designed to treat specific target pollutants and may not be optimized for the treatment of the wide range of compounds present in sewage plant odors. A comprehensive odor control strategy typically involves multiple treatment techniques tailored to the specific odor profile.
- Alternative Odor Control Technologies: Sewage treatment plants typically employ a combination of dedicated odor control technologies such as biofilters, activated carbon adsorption systems, chemical scrubbers, or other specialized methods. These technologies are specifically designed for the removal of odorous compounds and are often more suitable and efficient for odor control in wastewater treatment facilities.
- Compliance with Regulations: Odor emissions from sewage treatment plants are subject to regulatory requirements and local community sensitivities. Sewage treatment facilities need to comply with applicable regulations and implement effective odor control measures that are proven to be efficient in mitigating the specific odor issues associated with their operations.
In summary, while RTOs are effective for controlling gaseous pollutants, they are not commonly used as the primary odor control technology in sewage treatment plants. Sewage treatment facilities typically employ dedicated odor control technologies that are specifically designed for the removal of odorous compounds and can provide optimal performance and compliance with odor regulations.
Can regenerative thermal oxidizers handle high-temperature exhaust streams?
Regenerative thermal oxidizers (RTOs) are designed to handle high-temperature exhaust streams efficiently. They are capable of accommodating exhaust gases with elevated temperatures and effectively treating them for pollutant removal. Here are some key points regarding the handling of high-temperature exhaust streams in RTOs:
- Thermal Stability: RTOs are constructed using materials that can withstand high temperatures, typically ranging from 800 to 1,500 degrees Celsius (1,472 to 2,732 degrees Fahrenheit). The combustion chamber, heat exchangers, and other components are designed to maintain their structural integrity and thermal stability under these conditions.
- Heat Recovery: One of the primary advantages of RTOs is their ability to recover and reuse heat from the high-temperature exhaust streams. The heat exchangers within the RTO capture the thermal energy from the outgoing exhaust gases and transfer it to the incoming process air or gas stream. This heat recovery process improves the overall energy efficiency of the system and reduces the need for additional fuel consumption.
- Effective Combustion: RTOs are equipped with combustion chambers where the high-temperature exhaust gases are directed. In the combustion chamber, the pollutants in the exhaust stream are oxidized at high temperatures, typically above the autoignition temperature of the pollutants. This ensures effective destruction of the pollutants, even in high-temperature environments.
- Heat Exchange: RTOs utilize a regenerative heat exchange system, which allows for the efficient transfer of heat between the incoming and outgoing gas streams. The heat exchange media within the RTO alternately absorbs and releases heat, enabling the preheating of the incoming gases and cooling of the outgoing gases. This heat exchange process helps maintain the desired operating temperatures within the RTO while maximizing energy recovery.
- System Design Considerations: When handling high-temperature exhaust streams, proper system design is crucial. Factors such as the choice of materials, insulation, and thermal expansion considerations are taken into account to ensure safe and efficient operation at elevated temperatures. Additionally, temperature monitoring and control systems are implemented to maintain optimal operating conditions.
It is important to note that the specific temperature limits and capabilities of an RTO may vary depending on the design, materials used, and the specific requirements of the application. Consulting with experienced engineers or RTO manufacturers can provide valuable insights into the suitability of an RTO for handling a particular high-temperature exhaust stream.
Overall, RTOs are well-suited for handling high-temperature exhaust streams, offering effective pollutant destruction, heat recovery, and energy efficiency in industrial applications.
How does a regenerative thermal oxidizer work?
A regenerative thermal oxidizer (RTO) operates through a cyclical process that involves several key steps. Here’s a detailed explanation of how an RTO works:
1. Inlet Plenum: The exhaust gases containing pollutants enter the RTO through the inlet plenum.
2. Heat Exchanger Beds: The RTO contains multiple heat exchanger beds filled with heat storage media, typically ceramic materials or structured packing. The heat exchanger beds are arranged in pairs.
3. Flow Control Valves: Flow control valves direct the airflow and control the direction of the exhaust gases through the RTO.
4. Combustion Chamber: The exhaust gases, now directed into the combustion chamber, are heated to a high temperature, typically between 1400°F (760°C) and 1600°F (870°C). This temperature range ensures effective thermal oxidation of the pollutants.
5. VOC Destruction: The high temperature in the combustion chamber causes the volatile organic compounds (VOCs) and other contaminants to react with oxygen, resulting in their thermal decomposition or oxidation. This process breaks down the pollutants into water vapor, carbon dioxide, and other harmless gases.
6. Heat Recovery: The hot, purified gases leaving the combustion chamber pass through the outlet plenum and flow through the heat exchanger beds that are in the opposite phase of operation. The heat storage media in the beds absorb heat from the outgoing gases, which preheats the incoming exhaust gases.
7. Cycle Switching: After a specific time interval, the flow control valves switch the airflow direction, allowing the heat exchanger beds that were preheating the incoming gases to now receive the hot gases from the combustion chamber. The cycle then repeats, ensuring continuous and efficient operation.
Advantages of a regenerative thermal oxidizer:
RTOs offer several advantages in industrial air pollution control:
1. High Efficiency: RTOs can achieve high destruction efficiencies, typically above 95%, effectively removing a wide range of pollutants.
2. Energy Recovery: The heat recovery mechanism in RTOs allows for significant energy savings. The preheating of incoming gases reduces the fuel consumption required for combustion, making RTOs energy-efficient.
3. Cost-effectiveness: Although the initial capital investment for an RTO can be significant, the long-term operational cost savings through energy recovery and high destruction efficiencies make it a cost-effective solution over the lifespan of the system.
4. Environmental Compliance: RTOs are designed to meet stringent emissions regulations and help industries comply with air quality standards and permits.
5. Versatility: RTOs can handle a wide range of process exhaust volumes and pollutant concentrations, making them suitable for various industrial applications.
Overall, a regenerative thermal oxidizer operates by utilizing heat recovery, high-temperature combustion, and cyclical flow control to effectively oxidize pollutants and achieve high destruction efficiencies while minimizing energy consumption.
editor by CX 2024-02-04