Información básica.
Modelo NO.
RTO
Métodos de tratamiento
Combustión
Fuentes de pullución
Control de la contaminación atmosférica
Marca
RUIMA
Origen
China
Código SA
84213990
Descripción del producto
Oxidador térmico regenerativo (RTO);
La técnica de oxidación más utilizada actualmente para
Dependiendo del volumen de aire y de la eficacia de purificación requerida, la RTO se suministra con 2, 3, 5 ó 10 cámaras;
Ventajas
Amplia gama de COV a tratar
Bajo coste de mantenimiento
Alta eficiencia térmica
No genera residuos
Adaptable a pequeños, medianos y grandes caudales de aire
Recuperación de calor mediante bypass si la concentración de COV supera el punto autotérmico
Autotérmico y recuperación de calor:;
Eficiencia térmica > 95%
Punto autotérmico a 1.;2 - 1.;7 mgC/Nm3
Caudal de aire de 2,; 000 a 200,; 000m3/h
Alta destrucción de COV
La eficacia de purificación es normalmente superior al 99%;
Dirección: No 3 North Xihu (West Lake) Dis. Road, Xihu (West Lake) Dis., HangZhou, ZheJiang , China
Tipo de empresa: Fabricante/Fábrica
Campo de actividad: Maquinaria de fabricación y procesamiento, Servicios
Certificación del sistema de gestión: ISO 14001, ISO 9001, OHSAS/ OHSMS 18001, QHSE
Productos principales: Secador, Extrusora, Calentador, Extrusora de doble husillo, Equipo electroquímico de protección contra la corrosión, Tornillo, Mezcladora, Granuladora, Compresor, Granuladora
Presentación de la empresa: El Inst. de Res. de Chem. Mach del Ministerio de Industria Química se fundó en ZheJiang en 1958, y se trasladó a HangZhou en 1965.
El Inst. de Res. de Automatización del Ministerio de Industria Química se fundó en HangZhou en 1963.
En 1997, el Inst. de Res. de Maq. Mach del Ministerio de Industria Química y el Inst. Res. de Automatización del Ministerio de Industria Química se unieron para convertirse en el Inst. Res. de Maquinaria Química y Automatización del Ministerio de Industria Química.
En 2000, el Instituto de Maquinaria Química y Automatización del Ministerio de Industria Química completó su transformación en empresa y se registró como Instituto CHINAMFG de Maquinaria Química y Automatización.
El Instituto Tianhua cuenta con las siguientes instituciones subordinadas:
Centro de Supervisión e Inspección de la Calidad de los Equipos Químicos de HangZhou, provincia de ZheJiang
Instituto de Equipamiento de HangZhou en HangZhou, provincia de ZheJiang;
Instituto de Automatización de HangZhou, provincia de ZheJiang;
HangZhou Ruima Chemical Machinery Co Ltd en HangZhou, provincia de ZheJiang;
HangZhou Ruide Drying Technology Co Ltd en HangZhou, provincia de ZheJiang;
HangZhouLantai Plastics Machinery Co Ltd en HangZhou, provincia de ZheJiang;
ZheJiang Airuike Automation Technology Co Ltd en HangZhou, provincia de ZheJiang;
El Instituto Unido de HangZhou de Maquinaria Química y Automatización y el Instituto Unido de HangZhou de Hornos de la Industria Petroquímica fueron fundados por el Instituto CHINAMFG y Sinopec.
El Instituto Tianhua tiene una superficie ocupada de 80 000 m2 y un activo total de 1 yuan (RMB). El valor de producción anual es de 1 yuan (RMB).
El Instituto Tianhua cuenta con unos 916 empleados, de los cuales 75% son personal profesional. Entre ellos hay 23 catedráticos, 249 ingenieros superiores y 226 ingenieros. 29 catedráticos e ingenieros superiores disfrutan de una subvención especial nacional, a 5 personas se les ha concedido el título de Especialista Joven y de Mediana Edad con Destacada Contribución a la R. P. China.
¿Son adecuados los oxidadores térmicos regenerativos para aplicaciones a pequeña escala?
Los oxidadores térmicos regenerativos (RTO) están diseñados principalmente para aplicaciones industriales de mediana y gran escala debido a sus características específicas y requisitos operativos. Sin embargo, su idoneidad para aplicaciones a pequeña escala depende de varios factores:
- Volumen de escape del proceso: El volumen de escape generado por la aplicación a pequeña escala desempeña un papel crucial a la hora de determinar la viabilidad del uso de una RTO. Las RTO suelen estar diseñadas para manejar grandes volúmenes de gases de escape, y si el volumen de gases de escape de la aplicación a pequeña escala es demasiado bajo, puede que no sea rentable o eficiente utilizar una RTO.
- Costes de capital y explotación: La adquisición, instalación y funcionamiento de los RTO puede resultar costosa. La inversión de capital necesaria para una aplicación a pequeña escala puede no estar justificada si se tienen en cuenta los volúmenes de escape y las concentraciones de contaminantes relativamente más bajos. Además, los costes de funcionamiento, incluido el consumo de energía y el mantenimiento, pueden superar los beneficios de las operaciones a pequeña escala.
- Disponibilidad de plazas: Los RTO requieren un espacio físico considerable para su instalación. Las aplicaciones a pequeña escala pueden tener limitaciones de espacio, lo que dificulta acomodar los requisitos de tamaño y disposición de un sistema RTO.
- Requisitos reglamentarios: Las aplicaciones a pequeña escala pueden estar sujetas a requisitos reglamentarios diferentes en comparación con las operaciones industriales de mayor envergadura. Deben tenerse en cuenta los límites específicos de emisión y las normas de calidad del aire aplicables a la aplicación a pequeña escala para garantizar su cumplimiento. Es posible que existan tecnologías alternativas de control de emisiones más adecuadas para las aplicaciones a pequeña escala, como los oxidantes catalíticos o los biofiltros.
- Características del proceso: La naturaleza del flujo de escape de la aplicación a pequeña escala, incluidos el tipo y la concentración de contaminantes, puede influir en la elección de la tecnología de control de emisiones. Las RTO son más eficaces para aplicaciones con altas concentraciones de compuestos orgánicos volátiles (COV) y contaminantes atmosféricos peligrosos (HAP). Si el perfil de contaminantes de la aplicación a pequeña escala es diferente, pueden ser más apropiadas tecnologías alternativas.
Aunque las RTO suelen ser más adecuadas para aplicaciones a mediana y gran escala, es importante evaluar los requisitos específicos, las limitaciones y el análisis coste-beneficio de cada aplicación individual a pequeña escala antes de considerar el uso de una RTO. También deberían evaluarse tecnologías alternativas de control de emisiones más adecuadas para operaciones a pequeña escala.
¿Cómo gestionan los oxidadores térmicos regenerativos las variaciones en la composición de los contaminantes?
Los oxidadores térmicos regenerativos (RTO) están diseñados para tratar eficazmente las variaciones en la composición de los contaminantes. Los RTO se utilizan habitualmente para tratar compuestos orgánicos volátiles (COV) y contaminantes atmosféricos peligrosos (HAP) emitidos por diversos procesos industriales. He aquí algunos puntos clave sobre cómo los RTO gestionan las variaciones en la composición de los contaminantes:
- Proceso de oxidación térmica: Las RTO utilizan un proceso de oxidación térmica para eliminar los contaminantes. El proceso consiste en elevar la temperatura de los gases de escape hasta un nivel en el que los contaminantes reaccionan con el oxígeno y se oxidan en dióxido de carbono (CO2) y vapor de agua. Este proceso de oxidación a alta temperatura es eficaz para tratar una amplia gama de contaminantes, independientemente de su composición específica.
- Amplia gama de compatibilidad con contaminantes: Las RTO están diseñadas para tratar un amplio espectro de contaminantes, incluidos COV y HAP con distintas composiciones químicas. Las altas temperaturas de funcionamiento de la RTO, normalmente entre 760°C y 870°C (1400°F y 1600°F), garantizan la oxidación eficaz de una amplia gama de compuestos orgánicos, independientemente de su estructura molecular o composición química.
- Tiempo de residencia y tiempo de permanencia: Las RTO proporcionan un tiempo de residencia y de permanencia suficiente para los gases de escape dentro del incinerador. Los gases de escape se conducen a través de un sistema de intercambio de calor, donde pasan por lechos de medios cerámicos o medios de intercambio de calor. Estos lechos absorben el calor de la cámara de combustión a alta temperatura y lo transfieren a los gases de escape entrantes. El mayor tiempo de residencia y de permanencia garantiza que incluso los contaminantes complejos o menos reactivos tengan suficiente tiempo de contacto con la temperatura elevada para ser oxidados eficazmente.
- Recuperación de calor: Las RTO incorporan sistemas de recuperación de calor que maximizan la eficiencia térmica. Los intercambiadores de calor dentro de la RTO capturan y transfieren el calor de los gases de escape salientes a la corriente de proceso entrante. Este proceso de intercambio de calor ayuda a mantener las altas temperaturas de funcionamiento necesarias para una destrucción eficaz de los contaminantes, al tiempo que minimiza el consumo de energía del sistema. La capacidad de recuperar y reutilizar el calor también contribuye a la capacidad de la RTO para gestionar variaciones en la composición de los contaminantes.
- Sistemas de control avanzados: Las RTO emplean sistemas de control avanzados para supervisar y optimizar el proceso de oxidación. Estos sistemas de control supervisan continuamente parámetros como la temperatura, los caudales y las concentraciones de contaminantes. Al ajustar las condiciones de funcionamiento en respuesta a las variaciones en la composición de los contaminantes, los sistemas de control garantizan un rendimiento óptimo y mantienen una alta eficiencia de destrucción.
En resumen, las RTO gestionan las variaciones en la composición de los contaminantes utilizando un proceso de oxidación térmica, dando cabida a una amplia gama de contaminantes, proporcionando un tiempo de residencia y de permanencia suficiente, incorporando sistemas de recuperación de calor y empleando sistemas de control avanzados. Estas características permiten a las RTO tratar eficazmente emisiones con diferentes composiciones de contaminantes, garantizando una alta eficiencia de destrucción y el cumplimiento de la normativa medioambiental.
¿Cuál es la eficacia de los oxidadores térmicos regenerativos en la destrucción de compuestos orgánicos volátiles (COV)?
Los oxidadores térmicos regenerativos (RTO) son muy eficaces en la destrucción de compuestos orgánicos volátiles (COV) emitidos en procesos industriales. Estas son las razones por las que los RTO se consideran eficientes en la destrucción de COV:
1. Alta eficacia de destrucción: Los RTO son conocidos por su alta eficacia de destrucción, que normalmente supera los 99%. Oxidan eficazmente los COV presentes en las corrientes de escape industriales, convirtiéndolos en subproductos menos nocivos, como dióxido de carbono y vapor de agua. Esta alta eficacia de destrucción garantiza la eliminación de la mayoría de los COV, lo que se traduce en emisiones más limpias y el cumplimiento de la normativa medioambiental.
2. Tiempo de residencia: Las RTO ofrecen un tiempo de residencia suficientemente largo para la combustión de COV. En la cámara RTO, el aire cargado de COV se dirige a través de un lecho de medios cerámicos, que actúa como disipador térmico. Los COV se calientan hasta alcanzar la temperatura de combustión y reaccionan con el oxígeno disponible, lo que provoca su destrucción. El diseño de las RTO garantiza que los COV tengan tiempo suficiente para someterse a una combustión completa antes de ser liberados a la atmósfera.
3. Control de temperatura: Las RTO mantienen la temperatura de combustión dentro de un rango específico para optimizar la destrucción de COV. La temperatura de funcionamiento se controla cuidadosamente en función de factores como el tipo de COV, su concentración y los requisitos específicos del proceso industrial. Al controlar la temperatura, las RTO garantizan una oxidación eficaz de los COV, maximizando la eficacia de la destrucción y minimizando la formación de subproductos nocivos, como los óxidos de nitrógeno (NOx).
4. Recuperación de calor: Las RTO incorporan un sistema de recuperación de calor regenerativo que mejora su eficiencia energética global. El sistema capta y precalienta el aire de proceso entrante utilizando la energía térmica de la corriente de escape saliente. Este mecanismo de recuperación de calor minimiza la cantidad de combustible externo necesario para mantener la temperatura de combustión, lo que se traduce en ahorro de energía y rentabilidad. La recuperación de calor también ayuda a mantener la alta eficacia de destrucción de los COV al proporcionar una temperatura de funcionamiento constante y optimizada.
5. Integración de catalizadores: En algunos casos, las RTO pueden equiparse con lechos catalizadores para mejorar aún más la eficacia de destrucción de los COV. Los catalizadores pueden acelerar el proceso de oxidación y reducir la temperatura de funcionamiento necesaria, mejorando la eficacia global de la destrucción de COV. La integración de catalizadores es especialmente beneficiosa para procesos con concentraciones más bajas de COV o cuando determinados COV requieren temperaturas más bajas para una oxidación eficaz.
6. Cumplimiento de la normativa: La alta eficacia de destrucción de los RTO garantiza el cumplimiento de la normativa medioambiental que regula las emisiones de COV. Muchos sectores industriales están sujetos a estrictas normas de calidad del aire y límites de emisión. Las RTO ofrecen una solución eficaz para cumplir estos requisitos al destruir los COV de forma fiable y eficiente, reduciendo su impacto en la calidad del aire y la salud pública.
En resumen, los oxidadores térmicos regenerativos (RTO) son muy eficaces en la destrucción de compuestos orgánicos volátiles (COV). Su alta eficiencia de destrucción, el tiempo de residencia, el control de la temperatura, las capacidades de recuperación de calor, la integración opcional de catalizadores y el cumplimiento de la normativa hacen de los RTO la opción preferida para las industrias que buscan soluciones eficaces y sostenibles para la reducción de COV.
editor by CX 2024-02-19