Základní informace.
Model NO.
Amazing TO
Typ
Spalovna
Low Cost
100
Úspora energie
100
Vysoká účinnost
100
Ochranná známka
Bjamazing
Přepravní balíček
Overseas
Specifikace
123
Původ
Čína
Kód HS
345
Popis produktu
Thermal oxidizer
TO (Thermal oxidizer) direct cracking is a common device for VOC treating. It has the feature of high efficiency and low investment cost
When CHINAMFG grain is often generated during VOC air cracking, DTO is a better choice for VOC treating
Technical parameter | |
Treating capacity | 8000 ~ 100000 m3/h |
Treatment efficiency | up to 98% |
Pressure flutuation | Relatively small |
Occupying area | Relatively large |
investment | Relatively less |
RTO, RTO, thermal oxidizer, regenerative thermal oxidizer
Our company’s RTO(Abbreviation of Regenerative Thermal Oxidizer), is a high-efficiency treatment equipment for organic waste gas. Comparing to catalytic combustion or direct combustion, it has character of high thermal efficiency, low operation cost, coping with big amount low concentration waste gas. If concentration is slightly high, it is possible for waste heat recovery for dramatically reduction of production and operation cost.
It is applied to various industries, such as surface spraying and coating, automobile, electronics, pharmaceuticals, petrochemical and rubber production; It can cope with waste gas content, such as benzene, methylbenzene, dimethylbenzene, etc.
Incinerator, Incinerator, Incinerator, RTO, RTO, thermal oxidizer, regenerative thermal oxidizer, waste gas treatment, VOC treatment, waste gas processing, VOC processing, incinerator, heat recycle, heat exchanger
Adresa: 8 patro, E1, budova Pinwei, Dishengxi road, Yizhuang, ZheJiang, Čína
Typ podnikání: Výrobce/Továrna, Obchodní společnost
Rozsah podnikání: Elektrika a elektronika, Průmyslová zařízení a komponenty, Stroje na výrobu a zpracování, Metalurgie, Nerosty a energie
Certifikace systému managementu: ISO 9001, ISO 14001
Hlavní produkty: Rto, barevná lakovací linka, galvanizační linka, vzduchový nůž, náhradní díly pro zpracovatelskou linku, nanášecí stroj, nezávislá zařízení, dřezový válec, projekt renovace, dmychadlo
Představení společnosti: ZheJiang Amazing Science & Technology Co., Ltd je prosperující hi-tech společnost se sídlem v oblasti hospodářského a technologického rozvoje ZheJiang (BDA). V souladu s konceptem realistického, inovativního, zaměřeného a efektivního naše společnost slouží především průmyslu zpracování odpadních plynů (VOC) a metalurgickým zařízením Číny a dokonce i celého světa. Máme pokročilou technologii a bohaté zkušenosti s projektem zpracování odpadních plynů VOCs, jehož reference byla úspěšně aplikována v průmyslu nátěrových hmot, pryže, elektroniky, polygrafie atd. Máme také roky technologické akumulace ve výzkumu a výrobě plochých linka na zpracování oceli a má téměř 100 příkladů použití.
Naše společnost se zaměřuje na výzkum, návrh, výrobu, instalaci a zprovoznění systému čištění organických odpadních plynů VOCs a projekt modernizace a aktualizace pro úsporu energie a ochranu životního prostředí linky na zpracování ploché oceli. Můžeme zákazníkům poskytnout kompletní řešení pro ochranu životního prostředí, úsporu energie, zlepšování kvality produktů a další aspekty.
Zabýváme se také různými náhradními díly a nezávislými zařízeními pro barevnou lakovací linku, galvanizační linku, mořicí linku, jako je válec, spojka, tepelný výměník, rekuperátor, vzduchový nůž, dmychadlo, svářečka, vyrovnávač napětí, skin pass, dilatační spára, smyk, spárovačka , sešívačka, hořák, sálavá trubice, převodový motor, reduktor atd.
Can regenerative thermal oxidizers be used for odor control in sewage treatment plants?
Regenerative thermal oxidizers (RTOs) are not commonly used for odor control in sewage treatment plants. While RTOs are effective in controlling gaseous pollutants, their application for odor control in wastewater treatment facilities has certain limitations and considerations.
Here are some key points to consider regarding the use of RTOs for odor control in sewage treatment plants:
- Nature of Odorous Compounds: Odors in sewage treatment plants are primarily caused by volatile organic compounds (VOCs) and sulfur compounds released during the treatment processes. RTOs are effective in treating VOCs, but they may not be specifically designed to address sulfur compounds, which can be challenging to control through thermal oxidation.
- Operating Temperature: RTOs require high operating temperatures for efficient pollutant destruction. However, the presence of sulfur compounds in sewage treatment plant emissions can lead to corrosion and fouling at elevated temperatures, potentially impacting the performance and lifespan of the RTO system.
- Complex Odor Mixture: Odors in sewage treatment plants are often complex mixtures of various compounds. RTOs are generally designed to treat specific target pollutants and may not be optimized for the treatment of the wide range of compounds present in sewage plant odors. A comprehensive odor control strategy typically involves multiple treatment techniques tailored to the specific odor profile.
- Alternative Odor Control Technologies: Sewage treatment plants typically employ a combination of dedicated odor control technologies such as biofilters, activated carbon adsorption systems, chemical scrubbers, or other specialized methods. These technologies are specifically designed for the removal of odorous compounds and are often more suitable and efficient for odor control in wastewater treatment facilities.
- Dodržování předpisů: Odor emissions from sewage treatment plants are subject to regulatory requirements and local community sensitivities. Sewage treatment facilities need to comply with applicable regulations and implement effective odor control measures that are proven to be efficient in mitigating the specific odor issues associated with their operations.
In summary, while RTOs are effective for controlling gaseous pollutants, they are not commonly used as the primary odor control technology in sewage treatment plants. Sewage treatment facilities typically employ dedicated odor control technologies that are specifically designed for the removal of odorous compounds and can provide optimal performance and compliance with odor regulations.
What are the noise level requirements for regenerative thermal oxidizers in residential areas?
The noise level requirements for regenerative thermal oxidizers (RTOs) in residential areas can vary depending on local regulations and specific circumstances. RTOs are typically designed to minimize noise emissions to ensure compliance with applicable noise regulations and to avoid disturbances to nearby residents. Here are some key points regarding noise level requirements for RTOs in residential areas:
- Noise Regulations: Different regions or jurisdictions may have specific noise regulations that apply to industrial equipment, including RTOs. These regulations typically define permissible noise levels and may vary depending on the time of day (daytime versus nighttime) and the zoning of the area (residential, commercial, or industrial).
- Noise Assessment: Prior to installing an RTO in a residential area, it is common practice to conduct a noise assessment. This assessment evaluates the expected noise levels generated by the RTO and compares them against the applicable noise regulations. The assessment considers factors such as the equipment design, operating conditions, and distance from residential properties.
- Noise Mitigation: If the noise assessment indicates that the RTO may exceed the permissible noise levels, mitigation measures can be implemented. These measures may include the use of noise barriers or enclosures around the RTO, acoustic insulation, or the installation of sound-absorbing materials to reduce noise propagation. The goal is to ensure that the noise emissions from the RTO are within the acceptable limits specified by the regulations.
- Community Engagement: In some cases, community engagement and communication with nearby residents may be necessary to address concerns related to noise emissions. This can involve sharing information about the RTO’s design, operation, and noise mitigation measures to assure residents that their concerns are being addressed and that the RTO is in compliance with the applicable regulations.
It is important to note that specific noise level requirements and mitigation measures can vary depending on the local regulations and the unique characteristics of the residential area. Consulting with local authorities, environmental agencies, or acoustic specialists can provide guidance on the specific noise level requirements and mitigation strategies that apply to RTO installations in residential areas.
In summary, the noise level requirements for RTOs in residential areas are typically governed by local regulations. Conducting a noise assessment, implementing noise mitigation measures if necessary, and engaging with the community can help ensure compliance with noise regulations and minimize disturbances to nearby residents.
How do regenerative thermal oxidizers compare to other air pollution control devices?
Regenerative thermal oxidizers (RTOs) are highly regarded air pollution control devices that offer several advantages over other commonly used air pollution control technologies. Here’s a comparison of RTOs with some other air pollution control devices:
Comparison | Regenerační tepelné oxidátory (RTO) | Electrostatic Precipitators (ESPs) | Scrubbers |
---|---|---|---|
Efficiency | RTOs achieve high VOC destruction efficiency, typically exceeding 99%. They are highly effective in destroying volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). | ESPs are effective in collecting particulate matter, such as dust and smoke, but they are less effective in destroying VOCs and HAPs. | Scrubbers are efficient in removing certain pollutants, such as gases and particulate matter, but their performance may vary depending on the specific pollutants being targeted. |
Applicability | RTOs are suitable for a wide range of industries and applications, including high-volume exhaust gases. They can handle varying concentrations and types of pollutants. | ESPs are commonly used for particulate matter control in applications such as power plants, cement kilns, and steel mills. They are less suitable for VOC and HAP control. | Scrubbers are widely used for removing acid gases, such as sulfur dioxide (SO2) and hydrogen chloride (HCl), as well as certain odorous compounds. They are often employed in industries such as chemical manufacturing and wastewater treatment. |
Energy Efficiency | RTOs incorporate heat recovery systems that allow for significant energy savings. They can achieve high thermal efficiency by preheating the incoming process air using the heat from the outgoing exhaust stream. | ESPs consume relatively low energy compared to other technologies, but they do not offer heat recovery capabilities. | Scrubbers generally consume more energy compared to RTOs and ESPs due to the energy required for liquid atomization and pumping. However, some scrubber designs may incorporate heat recovery mechanisms. |
Space Requirements | RTOs typically require more space compared to ESPs and certain scrubber designs due to the need for ceramic media beds and larger combustion chambers. | ESPs have a compact design and require less space compared to RTOs and some scrubber configurations. | Scrubber designs vary in size and complexity. Certain scrubber types, such as packed bed scrubbers, may require a larger footprint compared to RTOs and ESPs. |
Maintenance | RTOs generally require regular maintenance of components such as valves, dampers, and ceramic media beds. Periodic media replacement may be necessary depending on the operating conditions. | ESPs require periodic cleaning of collection plates and electrodes. Maintenance activities involve the removal of accumulated particulate matter. | Scrubbers require maintenance of liquid circulation systems, pumps, and mist eliminators. Regular monitoring and adjustment of the chemical reagents used in the scrubbing process are also necessary. |
It’s important to note that the selection of an air pollution control device depends on the specific pollutants, process conditions, regulatory requirements, and economic considerations of the industrial application. Each technology has its own advantages and limitations, and it’s essential to evaluate these factors to determine the most appropriate solution for effective air pollution control.
editor by CX 2023-10-12