معلومات اساسية.
نموذج رقم.
RTO مذهلة
يكتب
محرقة
كفاءة عالية
100
توفير الطاقة
100
صيانة منخفضة
100
سهولة التشغيل
100
العلامة التجارية
بجامازينج
حزمة النقل
في الخارج
مواصفة
111
أصل
الصين
رمز النظام المنسق
2221111
وصف المنتج
رتو
مؤكسد حراري متجدد
بالمقارنة مع الاحتراق الحفزي التقليدي، فإن المؤكسد الحراري المباشر؛ يتميز RTO بكفاءة تسخين عالية، وتكلفة تشغيل منخفضة، والقدرة على معالجة غاز النفايات منخفض التركيز وتدفق كبير؛ عندما يكون تركيز المركبات العضوية المتطايرة مرتفعًا، يمكن تحقيق إعادة تدوير الحرارة الثانوية، مما يقلل بشكل كبير من تكلفة التشغيل؛ لأن RTO يمكنه تسخين غاز النفايات مسبقًا بمستويات من خلال مجمع الحرارة الخزفي، مما قد يجعل غاز النفايات ساخنًا تمامًا ومتشققًا بدون زاوية ميتة (كفاءة المعالجة> 99٪)؛ مما يقلل من أكاسيد النيتروجين في غاز العادم؛ إذا كانت كثافة المركبات العضوية المتطايرة> 1500 مجم / متر مكعب؛ عندما يصل غاز النفايات إلى منطقة التكسير، يتم تسخينه إلى درجة حرارة التكسير بواسطة مجمع الحرارة، سيتم إغلاق الموقد في هذه الحالة.
يمكن تقسيم RTO إلى نوع الغرفة والنوع الدوار وفقًا لاختلاف وضع التشغيل. يتمتع النوع الدوار RTO بمزايا في ضغط النظام، واستقرار درجة الحرارة، ومقدار الاستثمار، وما إلى ذلك.
أنواع RTO | كفاءة | تغير الضغط (مليمتر مكعب)؛ | مقاس | (الحد الأقصى)؛حجم العلاج | |
كفاءة العلاج | كفاءة إعادة تدوير الحرارة | ||||
نوع دوار RTO | 99% | 97% | 0-4 | صغير (مرة واحدة)؛ | 50000 نيوتن متر مكعب/ساعة |
نوع RTO ذو ثلاث غرف | 99% | 97% | 0-10 | كبير (1.؛5 مرات)؛ | 100000 نيوتن متر مكعب/ساعة |
نوع RTO ذو غرفتين | 95% | 95% | 0-20 | وسط (1.؛2 مرات)؛ | 100000 نيوتن متر مكعب/ساعة |
مؤكسد حراري متجدد، مؤكسد حراري متجدد، مؤكسد حراري متجدد، مؤكسد حراري، مؤكسد حراري، مؤكسد حراري، مؤكسد، مؤكسد، مؤكسد، محرقة، محرقة، معالجة الغازات العادمة، معالجة الغازات العادمة، معالجة الغازات العادمة، معالجة المركبات العضوية المتطايرة، معالجة المركبات العضوية المتطايرة، معالجة RTO، RTO، RTO، RTO، دوار RTO، دوار RTO، دوار RTO، غرفة RTO، غرفة RTO، غرفة RTO
العنوان: الطابق الثامن، E1، مبنى Pinwei، طريق Dishengxi، Yizhuang، ZheJiang، الصين
نوع العمل: مصنع/شركة تصنيع، شركة تجارية
نطاق العمل: الكهرباء والإلكترونيات، المعدات والمكونات الصناعية، آلات التصنيع والمعالجة، المعادن والطاقة
شهادة نظام الإدارة: ISO 9001، ISO 14001
المنتجات الرئيسية: Rto، خط طلاء الألوان، خط الجلفنة، سكين الهواء، قطع غيار لخط المعالجة، الطلاء، المعدات المستقلة، بكرة الحوض، مشروع التجديد، المنفاخ
مقدمة عن الشركة: شركة ZheJiang Amazing Science & Technology Co., Ltd هي شركة مزدهرة عالية التقنية، تقع في منطقة التنمية الاقتصادية والتكنولوجية في ZheJiang (BDA). تلتزم شركتنا بمفهوم الواقعية والإبداع والتركيز والكفاءة، وتخدم بشكل أساسي صناعة معالجة غازات النفايات (VOCs) والمعدات المعدنية في الصين وحتى العالم أجمع. لدينا تكنولوجيا متقدمة وخبرة غنية في مشروع معالجة غازات النفايات VOCs، والذي تم تطبيق مرجعه بنجاح في صناعة الطلاء والمطاط والإلكترونيات والطباعة وما إلى ذلك. لدينا أيضًا سنوات من تراكم التكنولوجيا في البحث وتصنيع خط معالجة الفولاذ المسطح، ونمتلك ما يقرب من 100 مثال للتطبيق.
تركز شركتنا على البحث والتصميم والتصنيع والتركيب والتشغيل لنظام معالجة غاز النفايات العضوية المتطايرة ومشروع تجديد وتحديث خط معالجة الفولاذ المسطح لتوفير الطاقة وحماية البيئة. يمكننا تزويد العملاء بالحلول الكاملة لحماية البيئة وتوفير الطاقة وتحسين جودة المنتج وغيرها من الجوانب.
نحن نشارك أيضًا في قطع الغيار المختلفة والمعدات المستقلة لخط طلاء الألوان، خط الجلفنة، خط التخليل، مثل الأسطوانة، المقرن، المبادل الحراري، جهاز الاسترداد، سكين الهواء، المنفاخ، اللحام، مستوي التوتر، ممر الجلد، مفصل التمدد، القص، الموصل، الخياطة، الموقد، الأنبوب المشع، محرك التروس، المخفض، إلخ.
ما هي حدود المؤكسدات الحرارية المتجددة؟
على الرغم من أن المؤكسدات الحرارية المتجددة تستخدم على نطاق واسع للتحكم في تلوث الهواء، إلا أنها تعاني من بعض القيود التي يجب مراعاتها. وفيما يلي بعض القيود الرئيسية للمؤكسدات الحرارية المتجددة:
- تكلفة رأس المال المرتفعة: تتميز أنظمة المبادل الحراري التجديدي عادة بتكاليف رأسمالية أعلى مقارنة بتقنيات التحكم في تلوث الهواء الأخرى. ويمكن أن تساهم تعقيدات نظام المبادل الحراري التجديدي، الذي يتيح كفاءة عالية في استخدام الطاقة، في زيادة الاستثمار الأولي المطلوب لتثبيت أنظمة المبادل الحراري التجديدي.
- متطلبات المساحة: تتطلب أجهزة التحكم في تلوث الهواء عادةً مساحة أكبر مقارنة ببعض أجهزة التحكم في تلوث الهواء الأخرى. يتطلب وجود مبادلات حرارية متجددة وغرف احتراق ومعدات مرتبطة بها مساحة كافية للتثبيت. يمكن أن يشكل هذا قيدًا للصناعات ذات المساحة المتاحة المحدودة.
- استهلاك عالي للطاقة أثناء بدء التشغيل: تتطلب أجهزة RTO قدرًا معينًا من الوقت والطاقة للوصول إلى درجة حرارة التشغيل المثالية أثناء بدء التشغيل. يمكن أن يكون استهلاك الطاقة الأولي مرتفعًا نسبيًا، ومن المهم مراعاة هذا الجانب عند التخطيط للجدول التشغيلي وإدارة الطاقة لنظام RTO.
- القيود في التعامل مع المركبات العضوية المتطايرة ذات التركيز المنخفض: قد تكون لأنظمة التحكم في التلوث قيود في معالجة المركبات العضوية المتطايرة منخفضة التركيز بشكل فعال. إذا كانت تركيزات المركبات العضوية المتطايرة في غاز العادم منخفضة للغاية، فقد تكون الطاقة المطلوبة للحفاظ على درجة الحرارة اللازمة للأكسدة أعلى من الطاقة المنبعثة أثناء عملية الاحتراق. في مثل هذه الحالات، قد تكون تقنيات التحكم في تلوث الهواء الأخرى أو تقنيات التركيز المسبق أكثر ملاءمة.
- التحكم في الجسيمات: لم يتم تصميم أجهزة التحكم في الجسيمات خصيصًا للتحكم في انبعاثات الجسيمات. ورغم أنها قد توفر إزالة عرضية للجسيمات الدقيقة، فإن كفاءتها في إزالة الجسيمات أقل عمومًا مقارنة بأجهزة التحكم في الجسيمات المخصصة مثل المرشحات القماشية (الأكياس) أو أجهزة الترسيب الكهروستاتيكية.
- الغازات المسببة للتآكل الكيميائي: قد لا تكون أجهزة الطرد المركزي مناسبة لمعالجة غازات العادم التي تحتوي على مركبات شديدة التآكل. يمكن أن تؤدي درجات الحرارة المرتفعة داخل أجهزة الطرد المركزي إلى تسريع تآكل المواد، وقد يتطلب وجود الغازات المسببة للتآكل مواد إضافية مقاومة للتآكل أو تقنيات بديلة لمكافحة تلوث الهواء.
على الرغم من هذه القيود، تظل أنظمة التحكم في درجة الحرارة والرطوبة تقنية فعالة ومستخدمة على نطاق واسع لتدمير الملوثات الغازية في التطبيقات الصناعية المختلفة. ومن المهم تقييم المتطلبات المحددة وخصائص غازات العادم واللوائح البيئية عند النظر في تنفيذ نظام التحكم في درجة الحرارة والرطوبة.
Can regenerative thermal oxidizers handle corrosive exhaust gases?
Regenerative thermal oxidizers (RTOs) can be designed to handle corrosive exhaust gases effectively. However, the ability of an RTO to handle corrosive gases depends on several factors, including the choice of construction materials, operating conditions, and the specific corrosive nature of the exhaust gases. Here are some key points regarding the handling of corrosive exhaust gases in RTOs:
- Material Selection: The selection of appropriate construction materials is crucial when dealing with corrosive gases. RTOs can be constructed using materials that offer high resistance to corrosion, such as stainless steel, corrosion-resistant alloys (e.g., Hastelloy, Inconel), or coated materials. The choice of materials depends on the specific corrosive compounds present in the exhaust gases and their concentrations.
- Corrosion-Resistant Coatings: In addition to selecting corrosion-resistant materials, applying protective coatings can enhance the resistance of the RTO components to corrosive gases. Coatings such as ceramic coatings, epoxy coatings, or acid-resistant paints can provide an extra layer of protection against corrosion.
- Temperature Control: Maintaining appropriate operating temperatures in the RTO can help mitigate the corrosive effects of the exhaust gases. Higher temperatures can promote the decomposition of corrosive compounds, reducing their corrosive potential. Additionally, operating at higher temperatures can enhance the self-cleaning effect and prevent the accumulation of corrosive deposits on the surfaces.
- Gas Conditioning: Prior to entering the RTO, the exhaust gases can undergo gas conditioning processes to reduce their corrosive nature. This may involve pre-treatment methods such as scrubbing or neutralization to remove or neutralize corrosive compounds and reduce their concentration.
- Monitoring and Maintenance: Regular monitoring of the RTO performance and periodic maintenance are essential to ensure the effective handling of corrosive exhaust gases. Monitoring systems can track variables such as temperature, pressure, and gas composition to detect any deviations that may indicate corrosion-related issues. Proper maintenance, including cleaning and inspection of the components, helps identify and address any corrosion concerns in a timely manner.
It is important to note that the corrosiveness of exhaust gases can vary significantly depending on the specific industrial process and the pollutants involved. Therefore, when designing an RTO for handling corrosive gases, it is advisable to consult with experienced engineers or RTO manufacturers who can provide guidance on the appropriate design considerations and material selection.
By employing suitable materials, coatings, temperature control, gas conditioning, and maintenance practices, RTOs can effectively handle corrosive exhaust gases while ensuring their long-term performance and durability.
Can a regenerative thermal oxidizer handle high-volume exhaust gases?
Yes, a regenerative thermal oxidizer (RTO) is capable of handling high-volume exhaust gases emitted from industrial processes. RTOs are designed to handle a wide range of flow rates, including high-volume exhaust streams. Here are the reasons why RTOs are suitable for handling high-volume exhaust gases:
1. Scalability: RTOs are highly scalable and can be designed to accommodate varying exhaust gas volumes. The size and capacity of an RTO can be customized to match the specific requirements of the industrial process. This scalability allows RTOs to handle high-volume exhaust gases effectively.
2. Modular Design: RTOs often feature a modular design that allows multiple units to be installed in parallel. This modular configuration enables the treatment of large exhaust gas volumes by operating multiple RTO units simultaneously. The modular approach provides flexibility and ensures efficient handling of high-volume exhaust gases.
3. Large Heat Exchange Surface: RTOs incorporate structured ceramic media beds that provide a large heat exchange surface area. The media beds efficiently transfer heat between the incoming and outgoing gas streams, facilitating the oxidation of VOCs. The large heat exchange surface area enables RTOs to effectively handle high-volume exhaust gases while maintaining the required combustion temperature.
4. Heat Recovery: RTOs are known for their energy-efficient operation due to their heat recovery capabilities. The heat recovery system within an RTO captures and preheats the incoming process air by utilizing the heat energy from the outgoing exhaust stream. This heat recovery mechanism minimizes the energy consumption required to maintain the combustion temperature, making RTOs well-suited for handling high-volume exhaust gases without significantly increasing energy costs.
5. Effective Flow Distribution: RTOs are engineered to ensure proper flow distribution within the system. The design includes appropriate ductwork, valves, and dampers to evenly distribute the exhaust gases across the ceramic media beds. Effective flow distribution prevents preferential flow paths and ensures that all exhaust gases receive sufficient residence time for complete VOC destruction, even in high-volume exhaust gas applications.
6. Advanced Control Systems: Modern RTOs are equipped with advanced control systems that optimize the performance of the system. These control systems monitor and regulate various parameters, including temperature, airflow, and valve sequencing. The control systems adapt to the fluctuating exhaust gas volumes and maintain the required combustion temperature, ensuring efficient handling of high-volume exhaust gases.
In summary, regenerative thermal oxidizers (RTOs) are capable of effectively handling high-volume exhaust gases. Their scalability, modular design, large heat exchange surface, heat recovery capabilities, effective flow distribution, and advanced control systems make RTOs well-suited for industrial processes that generate substantial exhaust gas volumes.
editor by Dream 2024-05-06