Yandex Metrika

معلومات اساسية.

نموذج رقم.

رتو

Processing Methods

Combustion

Pullution Sources

Air Pollution Control

العلامة التجارية

RUIMA

أصل

الصين

رمز النظام المنسق

84213990

وصف المنتج

Regenerative Thermal Oxidizer (RTO);
The most widely used oxidation technique nowadays for
VOC emission reduction,; suitable for treating a wide range of solvents and processes.; Depending on air volume and required purification efficiency,; a RTO comes with 2,; 3,; 5 or 10 chambers.;

المزايا
Wide range of VOC’s to be treated
Low maintenance cost
High Thermal Efficiency
Does not generate any waste
Adaptable for small,; medium and large air flows
Heat Recovery via bypass if VOCs concentration exceed the auto-thermal point

Auto-thermal and Heat Recovery:;
Thermal Efficiency > 95%
Auto-thermal point at 1.;2 – 1.;7 mgC/Nm3
Air flow range from 2,; 000 up to 200,; 000m3/h

High VOC’s destruction
The purification efficiency is normally in excess of 99%

Address: No 3 North Xihu (West Lake) Dis. Road, Xihu (West Lake) Dis., HangZhou, ZheJiang , China

نوع العمل: مصنع/شركة مصنعة

Business Range: Manufacturing & Processing Machinery, Service

Management System Certification: ISO 14001, ISO 9001, OHSAS/ OHSMS 18001, QHSE

Main Products: Dryer, Extruder, Heater, Twin Screw Extruder, Electrochemical Corrosion Protection Equ, Screw, Mixer, Pelletizing Machine, Compressor, Pelletizer

Company Introduction: The Res. Inst of Chem. Mach of the Ministry of Chemical Industry was founded in ZheJiang in 1958, and moved to HangZhou in 1965.

The Res. Inst of Automation of the Ministry of Chemical Industry was founded in HangZhou in 1963.

In 1997, the Res. Inst. Of Chem. Mach of the Ministry of Chemical Industry and the Res. Inst. Of Automation of the Ministry of Chemical Industry were combined to become the Res. Inst of Chemical Machinery and Automation of the Ministry of Chemical Industry.

In 2000, the Res. Inst of Chemical Machinery and Automation of the Ministry of ChemicalIndustry completed its transformation to enterprise and registered as CHINAMFG Instituteof Chemical Machinery and Automation.

Tianhua Institute has the following subordinated institutions:

Supervision and Inspection Center of the Quality of Chemical Equipments in HangZhou, ZheJiang Province

HangZhou Equipment Institute in HangZhou, ZheJiang Province;

Automation Institute in HangZhou, ZheJiang Province;

HangZhou Ruima Chemical Machinery Co Ltd in HangZhou, ZheJiang Province;

HangZhou Ruide Drying Technology Co Ltd in HangZhou, ZheJiang Province;

HangZhouLantai Plastics Machinery Co Ltd in HangZhou, ZheJiang Province;

ZheJiang Airuike Automation Technology Co Ltd in HangZhou, ZheJiang Province;

The HangZhou United Institute of Chemical Machinery and automation and the HangZhou United Institute of Petrochemical Industry Furnaces were founded by CHINAMFG Institute and the Sinopec.

Tianhua Institute has an occupation area of 80 000m2 and a total asset of 1 Yuan (RMB). The annual output value is 1 Yuan (RMB).

Tianhua Institute has about 916 employees, 75% of them are professional personnel. Among them are 23 professors, 249senior engineers, 226 engineers. 29 professors and senior engineers enjoy national special subsidy, On 5 people the title of Middle-aged and Young Specialist with Outstanding Contribution to the P. R. China are conferred

المؤكسدات الحرارية المتجددة

How much energy can be recovered by a regenerative thermal oxidizer?

The amount of energy that can be recovered by a regenerative thermal oxidizer (RTO) depends on several factors, including the design of the RTO system, the operating conditions, and the specific characteristics of the exhaust gases being treated. Generally, RTOs are known for their high energy recovery efficiency, and they can recover a significant portion of the thermal energy from the exhaust gases.

Here are some key factors that influence the energy recovery potential of an RTO:

  • Heat Recovery System: The design and efficiency of the heat recovery system in the RTO significantly impact the amount of energy that can be recovered. RTOs typically use ceramic media beds or heat exchangers to capture and transfer heat between the exhaust gases and the incoming untreated gases. Well-designed heat exchangers with a large surface area and good thermal conductivity can enhance the energy recovery efficiency.
  • Temperature Differential: The temperature difference between the exhaust gases and the incoming untreated gases affects the energy recovery potential. The greater the temperature differential, the higher the potential for energy recovery. RTOs operating at higher temperature differentials can recover more energy compared to those with smaller differentials.
  • Flow Rates and Heat Capacity: The flow rates of the exhaust gases and incoming untreated gases, as well as their respective heat capacities, are important factors in determining the energy recovery capability. Higher flow rates and larger heat capacities result in more heat available for recovery.
  • Process Specifics: The specific characteristics of the industrial process and the composition of the exhaust gases being treated can influence the energy recovery potential. For example, exhaust gases with high concentrations of volatile organic compounds (VOCs) or other combustible components can provide a higher energy recovery potential.
  • Efficiency and System Optimization: The efficiency of the RTO system itself, including the combustion chamber, heat exchangers, and control mechanisms, also plays a role in the energy recovery. Well-maintained and optimized RTO systems can maximize the energy recovery potential.

While it is challenging to provide an exact numerical value for the energy recovery potential of an RTO, it is not uncommon for RTOs to achieve energy recovery efficiencies in the range of 90% or higher. This means that they can recover and reuse 90% or more of the thermal energy contained in the exhaust gases, significantly reducing the need for external fuel sources.

It’s important to note that the actual energy recovery achieved by an RTO will depend on the specific operating conditions, pollutant concentrations, and other factors mentioned above. Consulting with RTO manufacturers or conducting a detailed energy analysis can provide more accurate estimations of the energy recovery potential for a particular RTO system.

المؤكسدات الحرارية المتجددة

هل من الآمن تشغيل المؤكسدات الحرارية المتجددة؟

تم تصميم المؤكسدات الحرارية المتجددة (RTOs) مع مراعاة الاعتبارات المتعلقة بالسلامة لضمان تشغيلها بأمان. عند تركيبها وتشغيلها وصيانتها بشكل صحيح، توفر المؤكسدات الحرارية المتجددة مستوى عالٍ من السلامة. فيما يلي بعض النقاط الرئيسية المتعلقة بسلامة تشغيل المؤكسدات الحرارية المتجددة:

  • السلامة من الاحتراق والحرائق: تم تصميم أجهزة حرق الوقود السائل لحرق وتدمير المركبات العضوية المتطايرة (VOCs) والملوثات الأخرى الموجودة في تيار العادم بأمان. وهي تتضمن ميزات أمان مختلفة لمنع خطر الحرائق أو الانفجارات غير المنضبطة. قد تتضمن هذه الميزات أجهزة إيقاف اللهب وأجهزة استشعار درجة الحرارة وأجهزة تخفيف الضغط وأنظمة الإغلاق الآلية لضمان التشغيل الآمن في حالة ظروف التشغيل غير الطبيعية.
  • أنظمة التحكم والمراقبة: تم تجهيز محطات التحكم والتشغيل بأنظمة تحكم ومراقبة متقدمة تراقب باستمرار العديد من المعلمات مثل درجة الحرارة والضغط ومعدلات التدفق. توفر هذه الأنظمة بيانات في الوقت الفعلي للمشغلين، مما يسمح لهم باكتشاف أي انحرافات عن ظروف التشغيل الطبيعية على الفور. غالبًا ما يتم تضمين أجهزة الإنذار وأقفال الأمان لتنبيه المشغلين وبدء الإجراءات المناسبة في حالة المواقف غير الطبيعية.
  • استعادة الحرارة والكفاءة الحرارية: تم تصميم أنظمة إعادة تدوير الحرارة لتعظيم الكفاءة الحرارية من خلال استعادة وإعادة استخدام الحرارة المتولدة أثناء عملية الأكسدة. وهذا يقلل من إجمالي استهلاك الطاقة ويقلل من خطر تراكم الحرارة داخل النظام، مما يساهم في التشغيل الآمن ومنع درجات الحرارة المفرطة التي قد تشكل مخاطر على السلامة.
  • اختيار المعدات والمواد: يتم تصنيع أجهزة المبادل الحراري الحراري باستخدام مواد يمكنها تحمل درجات الحرارة العالية والظروف التآكلية التي تواجهها أثناء التشغيل. تُستخدم عادةً مواد مقاومة للحرارة، مثل الأسِرَّة الخزفية أو المبادلات الحرارية المعدنية. يضمن اختيار المواد المناسبة سلامة المعدات وطول عمرها، مما يقلل من خطر الأعطال أو التسربات التي قد تعرض السلامة للخطر.
  • الالتزام بالمعايير واللوائح: يجب أن تمتثل مرافق التدريب العملي لمعايير وأنظمة السلامة المعمول بها. تحدد هذه المعايير متطلبات محددة لتصميم وتركيب وتشغيل وصيانة أنظمة التحكم في تلوث الهواء، بما في ذلك مرافق التدريب العملي. يضمن الامتثال لهذه المعايير أن مرافق التدريب العملي تلبي معايير السلامة اللازمة وتساعد في حماية صحة ورفاهية الموظفين والبيئة المحيطة.
  • تدريب المشغل والصيانة: يعد التدريب الكافي للمشغل والصيانة المنتظمة أمرًا بالغ الأهمية لتشغيل RTO بأمان. يجب أن يتلقى المشغلون تدريبًا شاملاً على تشغيل النظام وإجراءات السلامة وبروتوكولات الاستجابة للطوارئ. بالإضافة إلى ذلك، تساعد الصيانة والفحوصات الروتينية في تحديد ومعالجة أي مخاوف محتملة تتعلق بالسلامة أو مشكلات المعدات قبل تفاقمها.

على الرغم من أن تشغيل أجهزة RTO آمن بشكل عام، فمن الضروري اتباع إرشادات الشركة المصنعة والحفاظ على بروتوكولات السلامة المناسبة والالتزام باللوائح المعمول بها لضمان التشغيل الآمن والموثوق به.

المؤكسدات الحرارية المتجددة

What is the lifespan of a regenerative thermal oxidizer?

The lifespan of a regenerative thermal oxidizer (RTO) can vary depending on several factors, including the quality of the equipment, proper maintenance, operating conditions, and technological advancements. Generally, a well-designed and properly maintained RTO can have a lifespan ranging from 15 to 25 years or more.

Here are some factors that can influence the lifespan of an RTO:

  • Quality of Construction: RTOs constructed with high-quality materials, such as corrosion-resistant alloys and refractory linings, tend to have a longer lifespan. Robust construction ensures durability and resistance to the harsh operating conditions often encountered in industrial processes.
  • Maintenance Practices: Regular and proactive maintenance is crucial to maximize the lifespan of an RTO. This includes periodic inspections, cleaning and replacement of components, such as valves, dampers, and ceramic media beds, and monitoring of operating parameters. Adequate maintenance helps prevent premature equipment failure and ensures optimal performance.
  • Operating Conditions: The operating conditions of the RTO, such as temperature, gas composition, and particulate loading, can affect its lifespan. Operating the RTO within its design parameters and avoiding excessive thermal or chemical stresses can contribute to a longer lifespan.
  • Technological Advancements: Over time, technological advancements may lead to the introduction of more efficient and durable components or improvements in the overall design of RTOs. Upgrading or retrofitting an older RTO with newer technologies can extend its lifespan and enhance its performance.
  • Environmental Factors: Environmental factors, such as exposure to corrosive gases, high humidity, or harsh climates, can impact the lifespan of an RTO. Proper design considerations and protective measures, such as corrosion-resistant coatings or insulation, can mitigate these effects and prolong the equipment’s lifespan.

It is important to note that the lifespan mentioned is a general estimate and can vary depending on the specific circumstances. Regular inspections, maintenance, and adherence to manufacturer’s guidelines are essential to ensure the longevity and reliable operation of an RTO.

China Hot selling Regenerative Thermal Oxidizer (RTO)
editor by CX 2024-04-04

arAR