Maklumat Asas.
Model NO.
RTO yang menakjubkan
taip
Insinerator
Kecekapan Tinggi
100
Penjimatan Tenaga
100
Penyelenggaraan Rendah
100
Operasi Mudah
100
Tanda dagangan
Bjamazing
Pakej Pengangkutan
Luar negara
Spesifikasi
111
asal usul
China
Kod HS
2221111
Penerangan Produk
RTO
Pengoksida Terma Penjanaan Semula
Berbanding dengan pembakaran pemangkin tradisional,; pengoksida haba langsung,; RTO mempunyai merit kecekapan pemanasan yang tinggi,; kos operasi yang rendah,; dan keupayaan untuk merawat gas buangan kepekatan rendah fluks besar.; Apabila kepekatan VOC tinggi,; kitar semula haba sekunder boleh direalisasikan,; yang akan mengurangkan kos operasi.; Kerana RTO boleh memanaskan gas sisa mengikut tahap melalui penumpuk haba seramik,; yang boleh membuat gas buangan dipanaskan sepenuhnya dan retak tanpa sudut mati (kecekapan rawatan> 99%);,; yang mengurangkan NOX dalam gas yang meletihkan,; jika ketumpatan VOC >1500mg/Nm3,; apabila gas buangan mencapai kawasan retak,; ia telah dipanaskan sehingga suhu retak oleh penumpuk haba,; penunu akan ditutup di bawah keadaan ini.;
RTO boleh dibahagikan kepada jenis ruang dan jenis berputar mengikut mod operasi perbezaan.; RTO jenis Rotary mempunyai kelebihan dalam tekanan sistem,; kestabilan suhu,; jumlah pelaburan,; dll
jenis RTO | Kecekapan | Perubahan tekanan (mmAq); | Saiz | (maks); volum rawatan | |
Kecekapan rawatan | Kecekapan kitar semula haba | ||||
RTO jenis putar | 99% | 97% | 0-4 | kecil (1 kali); | 50000Nm3/j |
RTO jenis tiga ruang | 99% | 97% | 0-10 | besar (1.;5kali); | 100000Nm3/j |
RTO jenis dua ruang | 95% | 95% | 0-20 | tengah (1.;2kali); | 100000Nm3/j |
Pengoksida Terma Penjanaan Semula,; Pengoksida Terma Penjanaan Semula,; Pengoksida Terma Penjanaan Semula,; Pengoksida Terma,; Pengoksida Terma,; Pengoksida Terma,; pengoksida,; pengoksida,; pengoksida,; insinerator,; insinerator,; insinerator,; rawatan gas buangan,; rawatan gas buangan,; rawatan gas buangan,; rawatan VOC,; rawatan VOC,; rawatan VOC,; RTO,; RTO,; RTO,; Rotary RTO,; Rotary RTO,; Rotary RTO,; RTO Dewan,; RTO Dewan,; RTO Dewan
Alamat: tingkat 8, E1, bangunan Pinwei, jalan Dishengxi, Yizhuang, ZheJiang, China
Jenis Perniagaan: Pengeluar/Kilang, Syarikat Perdagangan
Julat Perniagaan: Elektrik & Elektronik, Peralatan & Komponen Industri, Jentera Pembuatan & Pemprosesan, Metalurgi, Mineral & Tenaga
Pensijilan Sistem Pengurusan: ISO 9001, ISO 14001
Produk Utama: Rto, Talian Salutan Warna, Talian Galvanisasi, Pisau Udara, Alat Ganti untuk Talian Pemprosesan, Coater, Peralatan Bebas, Gulung Sink, Projek Ubahsuai, Blower
Pengenalan Syarikat: ZheJiang Amazing Science & Technology Co., Ltd ialah sebuah syarikat berteknologi tinggi yang berkembang maju, terletak di ZheJiang Economic and Technological Development Area(BDA). Berpegang kepada konsep Realistik, Inovatif, Fokus dan Cekap, syarikat kami menyediakan perkhidmatan terutamanya dalam industri rawatan gas sisa (VOC) dan peralatan metalurgi China dan juga seluruh dunia. Kami mempunyai teknologi canggih dan pengalaman yang kaya dalam projek rawatan gas buangan VOC, yang rujukannya telah berjaya digunakan untuk industri salutan, getah, elektronik, percetakan, dll. Kami juga mempunyai pengumpulan teknologi selama bertahun-tahun dalam penyelidikan dan pembuatan flat talian pemprosesan keluli, dan mempunyai hampir 100 contoh aplikasi.
Syarikat kami menumpukan pada penyelidikan, reka bentuk, pengilangan, pemasangan dan pentauliahan sistem rawatan gas sisa organik VOC dan projek merombak dan mengemas kini untuk penjimatan tenaga dan perlindungan alam sekitar barisan pemprosesan keluli rata. Kami boleh menyediakan pelanggan penyelesaian lengkap untuk perlindungan alam sekitar, penjimatan tenaga, peningkatan kualiti produk dan aspek lain.
Kami juga terlibat dalam pelbagai alat ganti dan peralatan bebas untuk garis salutan warna, garis galvanizing, garis penjerukan, seperti penggelek, pengganding, penukar haba, recuperator, pisau udara, peniup, pengimpal, penyamara ketegangan, pas kulit, sambungan pengembangan, ricih, penyambung , penjahit, penunu, tiub berseri, motor gear, pengurang, dsb.
What is the cost of installing a regenerative thermal oxidizer?
The cost of installing a regenerative thermal oxidizer (RTO) can vary significantly depending on several factors. These factors include the size and capacity of the RTO, the specific requirements of the application, site conditions, and any additional customization or engineering needed. However, it’s important to note that RTOs are generally considered a significant capital investment due to their complex design and high-performance capabilities.
Here are some cost considerations associated with installing an RTO:
- RTO Size and Capacity: The size and capacity of the RTO, typically measured in terms of exhaust flow rate and pollutant concentration, are important cost factors. Larger RTOs capable of handling higher exhaust volumes and pollutant concentrations generally have higher upfront costs compared to smaller units.
- Engineering and Customization: The engineering and customization requirements for integrating the RTO into the existing industrial process can impact the installation cost. This includes factors such as ductwork modifications, electrical connections, and any necessary process integration to ensure proper functioning of the RTO within the overall system.
- Site Preparation: The site where the RTO will be installed may require preparation to accommodate the equipment. This can involve constructing foundations, providing adequate space for the RTO and associated components, and ensuring proper access for installation and maintenance.
- Auxiliary Systems and Equipment: In addition to the RTO itself, there may be auxiliary systems and equipment required for effective operation. This can include pre-treatment systems, such as scrubbers or filters, heat recovery units, monitoring and control systems, and stack emissions monitoring equipment. The cost of these additional components should be considered in the overall installation cost.
- Installation Labor and Equipment: The cost of labor and equipment required for the installation process, including crane services and specialized contractors, should be factored into the overall cost. The complexity of the installation and any specific site challenges can influence these costs.
- Permits and Compliance: Obtaining necessary permits and complying with regulatory requirements can involve additional costs. This includes fees for environmental permits, engineering studies, emissions testing, and compliance documentation.
Due to the many variables involved, it is challenging to provide a specific cost range for installing an RTO. It is recommended to consult with reputable RTO manufacturers or engineering firms, who can assess the specific requirements of the application and provide detailed cost estimates based on the project scope.
What are the noise level requirements for regenerative thermal oxidizers in residential areas?
The noise level requirements for regenerative thermal oxidizers (RTOs) in residential areas can vary depending on local regulations and specific circumstances. RTOs are typically designed to minimize noise emissions to ensure compliance with applicable noise regulations and to avoid disturbances to nearby residents. Here are some key points regarding noise level requirements for RTOs in residential areas:
- Noise Regulations: Different regions or jurisdictions may have specific noise regulations that apply to industrial equipment, including RTOs. These regulations typically define permissible noise levels and may vary depending on the time of day (daytime versus nighttime) and the zoning of the area (residential, commercial, or industrial).
- Noise Assessment: Prior to installing an RTO in a residential area, it is common practice to conduct a noise assessment. This assessment evaluates the expected noise levels generated by the RTO and compares them against the applicable noise regulations. The assessment considers factors such as the equipment design, operating conditions, and distance from residential properties.
- Noise Mitigation: If the noise assessment indicates that the RTO may exceed the permissible noise levels, mitigation measures can be implemented. These measures may include the use of noise barriers or enclosures around the RTO, acoustic insulation, or the installation of sound-absorbing materials to reduce noise propagation. The goal is to ensure that the noise emissions from the RTO are within the acceptable limits specified by the regulations.
- Community Engagement: In some cases, community engagement and communication with nearby residents may be necessary to address concerns related to noise emissions. This can involve sharing information about the RTO’s design, operation, and noise mitigation measures to assure residents that their concerns are being addressed and that the RTO is in compliance with the applicable regulations.
It is important to note that specific noise level requirements and mitigation measures can vary depending on the local regulations and the unique characteristics of the residential area. Consulting with local authorities, environmental agencies, or acoustic specialists can provide guidance on the specific noise level requirements and mitigation strategies that apply to RTO installations in residential areas.
In summary, the noise level requirements for RTOs in residential areas are typically governed by local regulations. Conducting a noise assessment, implementing noise mitigation measures if necessary, and engaging with the community can help ensure compliance with noise regulations and minimize disturbances to nearby residents.
Can a regenerative thermal oxidizer handle high-volume exhaust gases?
Yes, a regenerative thermal oxidizer (RTO) is capable of handling high-volume exhaust gases emitted from industrial processes. RTOs are designed to handle a wide range of flow rates, including high-volume exhaust streams. Here are the reasons why RTOs are suitable for handling high-volume exhaust gases:
1. Scalability: RTOs are highly scalable and can be designed to accommodate varying exhaust gas volumes. The size and capacity of an RTO can be customized to match the specific requirements of the industrial process. This scalability allows RTOs to handle high-volume exhaust gases effectively.
2. Modular Design: RTOs often feature a modular design that allows multiple units to be installed in parallel. This modular configuration enables the treatment of large exhaust gas volumes by operating multiple RTO units simultaneously. The modular approach provides flexibility and ensures efficient handling of high-volume exhaust gases.
3. Large Heat Exchange Surface: RTOs incorporate structured ceramic media beds that provide a large heat exchange surface area. The media beds efficiently transfer heat between the incoming and outgoing gas streams, facilitating the oxidation of VOCs. The large heat exchange surface area enables RTOs to effectively handle high-volume exhaust gases while maintaining the required combustion temperature.
4. Heat Recovery: RTOs are known for their energy-efficient operation due to their heat recovery capabilities. The heat recovery system within an RTO captures and preheats the incoming process air by utilizing the heat energy from the outgoing exhaust stream. This heat recovery mechanism minimizes the energy consumption required to maintain the combustion temperature, making RTOs well-suited for handling high-volume exhaust gases without significantly increasing energy costs.
5. Effective Flow Distribution: RTOs are engineered to ensure proper flow distribution within the system. The design includes appropriate ductwork, valves, and dampers to evenly distribute the exhaust gases across the ceramic media beds. Effective flow distribution prevents preferential flow paths and ensures that all exhaust gases receive sufficient residence time for complete VOC destruction, even in high-volume exhaust gas applications.
6. Advanced Control Systems: Modern RTOs are equipped with advanced control systems that optimize the performance of the system. These control systems monitor and regulate various parameters, including temperature, airflow, and valve sequencing. The control systems adapt to the fluctuating exhaust gas volumes and maintain the required combustion temperature, ensuring efficient handling of high-volume exhaust gases.
In summary, regenerative thermal oxidizers (RTOs) are capable of effectively handling high-volume exhaust gases. Their scalability, modular design, large heat exchange surface, heat recovery capabilities, effective flow distribution, and advanced control systems make RTOs well-suited for industrial processes that generate substantial exhaust gas volumes.
editor oleh Dream 2024-05-16