Maklumat Asas.
Model NO.
RTO yang menakjubkan
taip
Insinerator
Kecekapan Tinggi
100
Penjimatan Tenaga
100
Penyelenggaraan Rendah
100
Operasi Mudah
100
Tanda dagangan
Bjamazing
Pakej Pengangkutan
Luar negara
Spesifikasi
111
asal usul
China
Kod HS
2221111
Penerangan Produk
RTO
Pengoksida Terma Penjanaan Semula
Berbanding dengan pembakaran pemangkin tradisional,; pengoksida haba langsung,; RTO mempunyai merit kecekapan pemanasan yang tinggi,; kos operasi yang rendah,; dan keupayaan untuk merawat gas buangan kepekatan rendah fluks besar.; Apabila kepekatan VOC tinggi,; kitar semula haba sekunder boleh direalisasikan,; yang akan mengurangkan kos operasi.; Kerana RTO boleh memanaskan gas sisa mengikut tahap melalui penumpuk haba seramik,; yang boleh membuat gas buangan dipanaskan sepenuhnya dan retak tanpa sudut mati (kecekapan rawatan> 99%);,; yang mengurangkan NOX dalam gas yang meletihkan,; jika ketumpatan VOC >1500mg/Nm3,; apabila gas buangan mencapai kawasan retak,; ia telah dipanaskan sehingga suhu retak oleh penumpuk haba,; penunu akan ditutup di bawah keadaan ini.;
RTO boleh dibahagikan kepada jenis ruang dan jenis berputar mengikut mod operasi perbezaan.; RTO jenis Rotary mempunyai kelebihan dalam tekanan sistem,; kestabilan suhu,; jumlah pelaburan,; dll
jenis RTO | Kecekapan | Perubahan tekanan (mmAq); | Saiz | (maks); volum rawatan | |
Kecekapan rawatan | Kecekapan kitar semula haba | ||||
RTO jenis putar | 99% | 97% | 0-4 | kecil (1 kali); | 50000Nm3/j |
RTO jenis tiga ruang | 99% | 97% | 0-10 | besar (1.;5kali); | 100000Nm3/j |
RTO jenis dua ruang | 95% | 95% | 0-20 | tengah (1.;2kali); | 100000Nm3/j |
Pengoksida Terma Penjanaan Semula,; Pengoksida Terma Penjanaan Semula,; Pengoksida Terma Penjanaan Semula,; Pengoksida Terma,; Pengoksida Terma,; Pengoksida Terma,; pengoksida,; pengoksida,; pengoksida,; insinerator,; insinerator,; insinerator,; rawatan gas buangan,; rawatan gas buangan,; rawatan gas buangan,; rawatan VOC,; rawatan VOC,; rawatan VOC,; RTO,; RTO,; RTO,; Rotary RTO,; Rotary RTO,; Rotary RTO,; RTO Dewan,; RTO Dewan,; RTO Dewan
Alamat: tingkat 8, E1, bangunan Pinwei, jalan Dishengxi, Yizhuang, ZheJiang, China
Jenis Perniagaan: Pengeluar/Kilang, Syarikat Perdagangan
Julat Perniagaan: Elektrik & Elektronik, Peralatan & Komponen Industri, Jentera Pembuatan & Pemprosesan, Metalurgi, Mineral & Tenaga
Pensijilan Sistem Pengurusan: ISO 9001, ISO 14001
Produk Utama: Rto, Talian Salutan Warna, Talian Galvanisasi, Pisau Udara, Alat Ganti untuk Talian Pemprosesan, Coater, Peralatan Bebas, Gulung Sink, Projek Ubahsuai, Blower
Pengenalan Syarikat: ZheJiang Amazing Science & Technology Co., Ltd ialah sebuah syarikat berteknologi tinggi yang berkembang maju, terletak di ZheJiang Economic and Technological Development Area(BDA). Berpegang kepada konsep Realistik, Inovatif, Fokus dan Cekap, syarikat kami menyediakan perkhidmatan terutamanya dalam industri rawatan gas sisa (VOC) dan peralatan metalurgi China dan juga seluruh dunia. Kami mempunyai teknologi canggih dan pengalaman yang kaya dalam projek rawatan gas buangan VOC, yang rujukannya telah berjaya digunakan untuk industri salutan, getah, elektronik, percetakan, dll. Kami juga mempunyai pengumpulan teknologi selama bertahun-tahun dalam penyelidikan dan pembuatan flat talian pemprosesan keluli, dan mempunyai hampir 100 contoh aplikasi.
Syarikat kami menumpukan pada penyelidikan, reka bentuk, pengilangan, pemasangan dan pentauliahan sistem rawatan gas sisa organik VOC dan projek merombak dan mengemas kini untuk penjimatan tenaga dan perlindungan alam sekitar barisan pemprosesan keluli rata. Kami boleh menyediakan pelanggan penyelesaian lengkap untuk perlindungan alam sekitar, penjimatan tenaga, peningkatan kualiti produk dan aspek lain.
Kami juga terlibat dalam pelbagai alat ganti dan peralatan bebas untuk garis salutan warna, garis galvanizing, garis penjerukan, seperti penggelek, pengganding, penukar haba, recuperator, pisau udara, peniup, pengimpal, penyamara ketegangan, pas kulit, sambungan pengembangan, ricih, penyambung , penjahit, penunu, tiub berseri, motor gear, pengurang, dsb.
Are there any incentives or grants available for installing regenerative thermal oxidizers?
Yes, there are various incentives and grants available that can help offset the cost of installing regenerative thermal oxidizers (RTOs) and other emission control technologies. These incentives are typically offered by government agencies at the local, regional, and national levels to promote environmental sustainability, air quality improvement, and compliance with emissions regulations. However, the availability and specific details of these incentives may vary depending on the location and the specific program.
Here are some examples of incentives and grants that may be available:
- Energy Efficiency Grants: Many government agencies and utility companies offer grants and financial incentives to encourage energy efficiency measures, including the installation of energy-efficient equipment like RTOs. These grants can help offset a portion of the installation costs and may be based on factors such as energy savings, reduction in greenhouse gas emissions, or specific environmental objectives.
- Environmental Grant Programs: Some governmental organizations or environmental foundations provide grants specifically targeted at reducing emissions and improving air quality. These grants may be available for industries or businesses that invest in emission control technologies, such as RTOs, to help them comply with regulations and improve their environmental performance.
- Tax Incentives and Credits: Certain jurisdictions offer tax incentives or credits to businesses or industries that invest in environmentally friendly technologies. These incentives can significantly reduce the overall cost of installing an RTO. Examples include tax credits for energy-efficient equipment, accelerated depreciation allowances, or exemptions from sales tax on eligible equipment purchases.
- Industry-Specific Programs: Some industries or sectors may have specific grant programs or incentives tailored to their unique environmental challenges. These programs may provide financial assistance for emission control projects, including the installation of RTOs, within those industries.
- Research and Development Funding: Government agencies or research organizations often provide funding opportunities for the development and implementation of innovative emission control technologies. Businesses or research institutions involved in developing advanced RTO designs or improving RTO efficiency may be eligible for research grants or funding support.
To explore the availability of incentives and grants for installing RTOs, it is recommended to contact local environmental agencies, energy efficiency programs, or business development organizations. These entities can provide information on specific incentive programs, eligibility criteria, application procedures, and any deadlines or limitations associated with the grants.
It’s important to note that incentive programs may change over time, and their availability may depend on factors such as funding allocations and government policies. Therefore, it is advisable to stay updated with the latest information and consult with relevant authorities to determine the current incentives available for installing RTOs.
How do regenerative thermal oxidizers handle variations in pollutant composition?
Regenerative thermal oxidizers (RTOs) are designed to handle variations in pollutant composition effectively. RTOs are commonly used for treating volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) emitted from various industrial processes. Here are some key points regarding how RTOs handle variations in pollutant composition:
- Thermal Oxidation Process: RTOs utilize a thermal oxidation process to eliminate pollutants. The process involves raising the temperature of the exhaust gas to a level where the pollutants react with oxygen and are oxidized to carbon dioxide (CO2) and water vapor. This high-temperature oxidation process is effective in treating a wide range of pollutants, regardless of their specific composition.
- Wide Range of Pollutant Compatibility: RTOs are designed to handle a broad spectrum of pollutants, including VOCs and HAPs with varying chemical compositions. The high operating temperatures in the RTO, typically between 1400°F to 1600°F (760°C to 870°C), ensure that a wide range of organic compounds can be effectively oxidized, regardless of their molecular structure or chemical makeup.
- Residence Time and Dwell Time: RTOs provide sufficient residence time and dwell time for the exhaust gas within the oxidizer. The exhaust gas is directed through a heat exchange system, where it passes through ceramic media beds or heat exchange media. These media beds absorb the heat from the high-temperature combustion chamber and transfer it to the incoming exhaust gas. The extended residence time and dwell time ensure that even complex or less reactive pollutants have enough contact time with the elevated temperature to be effectively oxidized.
- Pemulihan Haba: RTOs incorporate heat recovery systems that maximize thermal efficiency. The heat exchangers within the RTO capture and transfer heat from the outgoing exhaust gas to the incoming process stream. This heat exchange process helps maintain the high operating temperatures required for effective pollutant destruction while minimizing the energy consumption of the system. The ability to recover and reuse heat also contributes to the RTO’s ability to handle variations in pollutant composition.
- Advanced Control Systems: RTOs employ advanced control systems to monitor and optimize the oxidation process. These control systems continuously monitor parameters such as temperature, flow rates, and pollutant concentrations. By adjusting the operating conditions in response to variations in pollutant composition, the control systems ensure optimal performance and maintain high destruction efficiencies.
In summary, RTOs handle variations in pollutant composition by utilizing a thermal oxidation process, accommodating a wide range of pollutants, providing sufficient residence time and dwell time, incorporating heat recovery systems, and employing advanced control systems. These features allow RTOs to effectively treat emissions with different pollutant compositions, ensuring high destruction efficiencies and compliance with environmental regulations.
How do regenerative thermal oxidizers handle start-up and shutdown procedures?
Regenerative thermal oxidizers (RTOs) have specific procedures for start-up and shutdown to ensure safe and efficient operation. These procedures are designed to optimize the performance of the RTO and minimize any potential risks. Here is an overview of how RTOs handle start-up and shutdown:
- Start-up Procedure: During start-up, the RTO goes through a series of steps to reach its operating temperature. The start-up procedure typically involves the following stages:
- Purge Stage: The RTO is purged with clean air or an inert gas to remove any potential flammable or explosive gases that may have accumulated during the shutdown period.
- Preheat Stage: The RTO’s heat exchangers are preheated using a burner or an auxiliary heat source. This gradually increases the temperature of the heat exchange media (typically ceramic or metallic beds) and the combustion chamber.
- Heat Soak Stage: Once the heat exchangers reach a certain temperature, the RTO enters the heat soak stage. In this stage, the heat exchangers are fully heated, and the RTO operates in a self-sustaining mode, with the combustion chamber temperature being maintained primarily by the heat released from the oxidation of pollutants in the exhaust gas.
- Normal Operation: After the heat soak stage, the RTO is considered to be in normal operation mode, where it maintains the desired operating temperature and treats the exhaust gas containing pollutants.
- Shutdown Procedure: The shutdown procedure of an RTO is aimed at safely and efficiently stopping the operation of the system. The procedure typically involves the following steps:
- Cool Down: The RTO is gradually cooled down by reducing the flow of the exhaust gas and the supply of combustion air. This helps to prevent thermal stress on the equipment and minimize the risk of fires or other safety hazards.
- Pemulihan Haba: During the cool-down phase, the RTO may employ heat recovery techniques to capture and utilize the residual heat for other purposes, such as preheating incoming process air or water.
- Purge: Once the RTO has cooled down sufficiently, a purge cycle is initiated to remove any residual gases or contaminants from the system. This helps to ensure a clean and safe environment for maintenance activities or subsequent start-ups.
- Complete Shutdown: After the purge cycle, the RTO is considered to be in a fully shut-down state, and it can remain in this state until the next start-up is initiated.
It is important to note that the specific start-up and shutdown procedures for an RTO may vary depending on the design and manufacturer. Manufacturers typically provide detailed guidelines and instructions for operating their specific RTO models, and it is crucial to follow these guidelines to ensure safe and efficient operation.
editor by Dream 2024-11-27