Informations de base.
Modèle NO.
RTO
Sources de Pullution
Contrôle de la pollution de l'air
Méthodes de traitement
Combustion
Marque déposée
RUIMA
Origine
Chine
Code SH
84213990
Description du produit
Oxydateur thermique régénératif (RTO) ;
La technique d'oxydation la plus utilisée aujourd'hui pour les
En fonction du volume d'air et de l'efficacité de purification requise, le RTO est équipé de 2, 3, 5 ou 10 chambres ;
Avantages
Large gamme de COV à traiter
Faible coût d'entretien
Rendement thermique élevé
Ne génère pas de déchets
Adaptable aux petits, moyens et grands débits d'air
Récupération de chaleur par dérivation si la concentration de COV dépasse le point auto-thermique
Auto-thermique et récupération de chaleur: ;
Efficacité thermique > 95&percnt ;
Point auto-thermique à 1.;2 - 1.;7 mgC/Nm3
Débit d'air de 2, ; 000 à 200, ; 000m3/h
Destruction des COV
L'efficacité de la purification est normalement supérieure à 99 % ;
Adresse : No 3 North Xihu (West Lake) Dis. Road, Xihu (West Lake) Dis., HangZhou, ZheJiang , China
Type d'entreprise : Fabricant/usine
Secteur d'activité : Machines de fabrication et de transformation, services
Certification du système de gestion : ISO 14001, ISO 9001, OHSAS/ OHSMS 18001, QHSE
Principaux produits : Sécheur, extrudeur, réchauffeur, extrudeur à double vis, équipement de protection contre la corrosion électrochimique, vis, mélangeur, machine à granuler, compresseur, granulateur.
Présentation de l'entreprise : L'Institut de recherche sur les machines chimiques du ministère de l'industrie chimique a été fondé à ZheJiang en 1958. Mach du ministère de l'industrie chimique a été fondé à ZheJiang en 1958 et a déménagé à HangZhou en 1965.
L'Institut de recherche sur l'automatisation du ministère de l'industrie chimique a été fondé à Hangzhou en 1963.
En 1997, l'Institut de recherche sur les machines chimiques du ministère de l'industrie chimique et l'Institut de recherche sur l'automatisation du ministère de l'industrie chimique ont été regroupés pour devenir l'Institut de recherche sur les machines chimiques et l'automatisation du ministère de l'industrie chimique. Mach du ministère de l'industrie chimique et le Res. Inst. of Automation du ministère de l'industrie chimique ont été regroupés pour devenir le Res. Inst. of Chemical Machinery and Automation du ministère de l'industrie chimique.
En 2000, l'Institut de recherche sur les machines chimiques et l'automatisation du ministère de l'industrie chimique a achevé sa transformation en entreprise et s'est enregistré sous le nom de CHINAMFG Institute of Chemical Machinery and Automation (Institut CHINAMFG des machines chimiques et de l'automatisation).
L'Institut Tianhua a les institutions subordonnées suivantes :
Centre de supervision et d'inspection de la qualité des équipements chimiques à HangZhou, province du ZheJiang
HangZhou Equipment Institute à HangZhou, dans la province de ZheJiang ;
Automation Institute à HangZhou, dans la province de ZheJiang ;
HangZhou Ruima Chemical Machinery Co Ltd à HangZhou, dans la province de ZheJiang ;
HangZhou Ruide Drying Technology Co Ltd à HangZhou, dans la province de ZheJiang ;
HangZhouLantai Plastics Machinery Co Ltd à HangZhou, dans la province de ZheJiang ;
ZheJiang Airuike Automation Technology Co Ltd à HangZhou, dans la province de ZheJiang ;
Le HangZhou United Institute of Chemical Machinery and automation et le HangZhou United Institute of Petrochemical Industry Furnaces ont été fondés par le CHINAMFG Institute et le Sinopec.
L'institut Tianhua a une superficie de 80 000 m2 et un actif total de 1 Yuan (RMB). La valeur de la production annuelle est de 1 Yuan (RMB).
L'Institut Tianhua emploie environ 916 personnes, dont 75% sont des professionnels. Parmi eux, on compte 23 professeurs, 249 ingénieurs principaux et 226 ingénieurs. 29 professeurs et ingénieurs principaux bénéficient d'une subvention nationale spéciale, et 5 personnes se sont vu décerner le titre de spécialiste d'âge moyen et de jeune spécialiste ayant apporté une contribution exceptionnelle à la République populaire de Chine.
Les oxydateurs thermiques régénératifs peuvent-ils être utilisés pour contrôler les odeurs dans les stations d'épuration ?
Les oxydateurs thermiques régénératifs (OTR) ne sont pas couramment utilisés pour le contrôle des odeurs dans les stations d'épuration. Bien que les RTO soient efficaces pour contrôler les polluants gazeux, leur application pour le contrôle des odeurs dans les installations de traitement des eaux usées présente certaines limites et considérations.
Voici quelques points clés à prendre en compte concernant l'utilisation des RTO pour le contrôle des odeurs dans les stations d'épuration :
- Nature des composés odorants : Les odeurs dans les stations d'épuration sont principalement causées par les composés organiques volatils (COV) et les composés sulfurés libérés au cours des processus de traitement. Les RTO sont efficaces pour traiter les COV, mais ils peuvent ne pas être spécifiquement conçus pour traiter les composés sulfurés, qui peuvent être difficiles à contrôler par oxydation thermique.
- Température de fonctionnement : Les RTO nécessitent des températures de fonctionnement élevées pour une destruction efficace des polluants. Cependant, la présence de composés sulfurés dans les émissions des stations d'épuration peut entraîner la corrosion et l'encrassement à des températures élevées, ce qui peut avoir un impact sur les performances et la durée de vie du système RTO.
- Mélange d'odeurs complexes : Les odeurs dans les stations d'épuration sont souvent des mélanges complexes de divers composés. Les RTO sont généralement conçus pour traiter des polluants cibles spécifiques et peuvent ne pas être optimisés pour le traitement de la large gamme de composés présents dans les odeurs des stations d'épuration. Une stratégie complète de contrôle des odeurs implique généralement plusieurs techniques de traitement adaptées au profil spécifique de l'odeur.
- Technologies alternatives de contrôle des odeurs : Les stations d'épuration utilisent généralement une combinaison de technologies spécifiques de contrôle des odeurs, telles que les biofiltres, les systèmes d'adsorption sur charbon actif, les épurateurs chimiques ou d'autres méthodes spécialisées. Ces technologies sont spécifiquement conçues pour l'élimination des composés odorants et sont souvent plus adaptées et plus efficaces pour le contrôle des odeurs dans les installations de traitement des eaux usées.
- Respect des réglementations : Les émissions d'odeurs provenant des stations d'épuration sont soumises à des exigences réglementaires et aux sensibilités des communautés locales. Les stations d'épuration doivent se conformer aux réglementations applicables et mettre en œuvre des mesures efficaces de contrôle des odeurs qui se sont avérées efficaces pour atténuer les problèmes d'odeurs spécifiques liés à leurs activités.
En résumé, si les RTO sont efficaces pour contrôler les polluants gazeux, ils ne sont pas couramment utilisés comme principale technologie de contrôle des odeurs dans les stations d'épuration. Les installations de traitement des eaux usées utilisent généralement des technologies de contrôle des odeurs spécialement conçues pour l'élimination des composés odorants, qui permettent d'obtenir des performances optimales et de se conformer aux réglementations en matière d'odeurs.
Les oxydateurs thermiques régénératifs peuvent-ils traiter les gaz d'échappement corrosifs ?
Les oxydateurs thermiques régénératifs (RTO) peuvent être conçus pour traiter efficacement les gaz d'échappement corrosifs. Cependant, la capacité d'un RTO à traiter les gaz corrosifs dépend de plusieurs facteurs, notamment le choix des matériaux de construction, les conditions de fonctionnement et la nature corrosive spécifique des gaz d'échappement. Voici quelques points clés concernant le traitement des gaz d'échappement corrosifs dans les RTO :
- Sélection des matériaux : La sélection de matériaux de construction appropriés est cruciale lorsqu'il s'agit de gaz corrosifs. Les RTO peuvent être construits avec des matériaux offrant une grande résistance à la corrosion, tels que l'acier inoxydable, les alliages résistants à la corrosion (par exemple, Hastelloy, Inconel) ou les matériaux revêtus. Le choix des matériaux dépend des composés corrosifs spécifiques présents dans les gaz d'échappement et de leurs concentrations.
- Revêtements résistants à la corrosion : Outre le choix de matériaux résistants à la corrosion, l'application de revêtements protecteurs peut améliorer la résistance des composants du RTO aux gaz corrosifs. Les revêtements tels que les revêtements céramiques, les revêtements époxy ou les peintures résistantes aux acides peuvent fournir une couche supplémentaire de protection contre la corrosion.
- Contrôle de la température : Le maintien de températures de fonctionnement appropriées dans la RTO peut contribuer à atténuer les effets corrosifs des gaz d'échappement. Des températures plus élevées peuvent favoriser la décomposition des composés corrosifs, réduisant ainsi leur potentiel corrosif. En outre, le fonctionnement à des températures plus élevées peut renforcer l'effet autonettoyant et empêcher l'accumulation de dépôts corrosifs sur les surfaces.
- Conditionnement au gaz : Avant d'entrer dans la RTO, les gaz d'échappement peuvent subir des processus de conditionnement des gaz afin de réduire leur nature corrosive. Cela peut impliquer des méthodes de prétraitement telles que le lavage ou la neutralisation pour éliminer ou neutraliser les composés corrosifs et réduire leur concentration.
- Suivi et maintenance : Une surveillance régulière des performances du RTO et une maintenance périodique sont essentielles pour garantir le traitement efficace des gaz d'échappement corrosifs. Les systèmes de surveillance peuvent suivre des variables telles que la température, la pression et la composition des gaz afin de détecter tout écart susceptible d'indiquer des problèmes liés à la corrosion. Une maintenance appropriée, comprenant le nettoyage et l'inspection des composants, permet d'identifier et de traiter tout problème de corrosion en temps utile.
Il est important de noter que la corrosivité des gaz d'échappement peut varier de manière significative en fonction du processus industriel spécifique et des polluants impliqués. Par conséquent, lors de la conception d'un RTO pour le traitement de gaz corrosifs, il est conseillé de consulter des ingénieurs expérimentés ou des fabricants de RTO qui peuvent fournir des conseils sur les considérations de conception appropriées et la sélection des matériaux.
En utilisant des matériaux, des revêtements, un contrôle de la température, un conditionnement des gaz et des pratiques d'entretien appropriés, les RTO peuvent traiter efficacement les gaz d'échappement corrosifs tout en garantissant leur performance et leur durabilité à long terme.
Oxydateur thermique régénératif vs oxydateur thermique
Lorsqu'on compare un oxydateur thermique régénératif (RTO) à un oxydateur thermique conventionnel, il y a plusieurs différences essentielles à prendre en compte :
1. Fonctionnement :
Un oxydateur thermique régénératif fonctionne selon un processus cyclique qui implique une récupération de chaleur, tandis qu'un oxydateur thermique fonctionne généralement en mode continu sans récupération de chaleur.
2. Récupération de chaleur :
L'une des principales distinctions entre les deux systèmes est le mécanisme de récupération de la chaleur. Un RTO utilise des lits d'échangeurs de chaleur remplis de céramique ou de garnitures structurées pour récupérer la chaleur des gaz sortants et préchauffer les gaz entrants, ce qui permet de réaliser des économies d'énergie. En revanche, un oxydateur thermique n'intègre pas de récupération de chaleur, ce qui entraîne une plus grande consommation d'énergie.
3. L'efficacité :
Les RTO sont connus pour leur efficacité de destruction élevée, généralement supérieure à 95%, qui permet une élimination efficace des composés organiques volatils (COV) et d'autres polluants. Les oxydateurs thermiques, quant à eux, peuvent avoir des rendements de destruction légèrement inférieurs en fonction de leur conception et de leurs conditions de fonctionnement spécifiques.
4. Consommation d'énergie :
Grâce au mécanisme de récupération de la chaleur, les RTO nécessitent généralement moins d'énergie pour fonctionner que les oxydateurs thermiques. Le préchauffage des gaz entrants dans un RTO réduit la consommation de combustible nécessaire à la combustion, ce qui le rend plus efficace sur le plan énergétique.
5. Le rapport coût-efficacité :
Bien que l'investissement initial pour un RTO puisse être plus élevé que celui d'un oxydateur thermique en raison des composants de récupération de chaleur, les économies de coûts d'exploitation à long terme grâce à la récupération d'énergie et à l'efficacité de destruction plus élevée font des RTO une solution rentable sur la durée de vie du système.
6. Respect de l'environnement :
Les RTO et les oxydateurs thermiques sont tous deux conçus pour répondre aux réglementations en matière d'émissions et aider les industries à se conformer aux normes et permis relatifs à la qualité de l'air. Cependant, les RTO offrent généralement des rendements de destruction plus élevés, ce qui peut améliorer la conformité environnementale.
7. Polyvalence :
Les RTO et les oxydateurs thermiques sont tous deux polyvalents en termes de traitement d'une large gamme de volumes de gaz d'échappement et de concentrations de polluants. Toutefois, les RTO sont souvent préférés pour les applications où l'efficacité de la destruction et la récupération d'énergie sont essentielles.
Globalement, les principales différences entre un oxydateur thermique régénératif et un oxydateur thermique résident dans le mécanisme de récupération de la chaleur, la consommation d'énergie, l'efficacité et la rentabilité. Les RTO offrent une récupération d'énergie supérieure et des rendements de destruction plus élevés, ce qui en fait une option intéressante pour les industries qui accordent la priorité à l'efficacité énergétique et au respect de l'environnement.
editor by CX 2023-09-27