Основна информация.
Модел NO.
Невероятен RTO
Тип
Инсинератор
Висока ефективност
100
Икономия на енергия
100
Ниска поддръжка
100
Лесна работа
100
Търговска марка
Бямазинг
Транспортен пакет
Зад граница
Спецификация
111
Произход
Китай
Код по ХС
2221111
Описание на продукта
RTO
Регенеративен термичен окислител
В сравнение с традиционното каталитично изгаряне; директен термичен окислител; RTO има предимствата на висока ефективност на отопление; ниски експлоатационни разходи; и способността за третиране на голям поток отпадъчни газове с ниска концентрация.; Когато концентрацията на ЛОС е висока,; може да се реализира вторично рециклиране на топлина; което значително ще намали оперативните разходи.; Тъй като RTO може предварително да загрява отпадъчния газ по нива чрез керамичен акумулатор на топлина; което може да накара отпадъчния газ да бъде напълно нагрят и напукан без мъртъв ъгъл (ефективност на третиране>99%);,;които намаляват NOX в отработения газ,; ако плътността на VOC >1500mg/Nm3,; когато отпадъчният газ достигне зоната на напукване; нагрят е до температура на напукване от топлинен акумулатор; при това условие горелката ще бъде затворена.;
RTO може да бъде разделен на камерен тип и ротационен тип според различния режим на работа.; Ротационен тип RTO има предимства в системното налягане; температурна стабилност,; сума на инвестицията; и т.н
RTO видове | Ефективност | Промяна на налягането (mmAq); | Размер | (макс.); Третиран обем | |
Ефективност на лечението | Ефективност на рециклиране на топлина | ||||
Ротационен тип RTO | 99% | 97% | 0-4 | малък (1 път); | 50000Nm3/h |
Трикамерен тип RTO | 99% | 97% | 0-10 | Голям (1.;5 пъти); | 100000Nm3/h |
Двукамерен тип RTO | 95% | 95% | 0-20 | средата (1.;2 пъти); | 100000Nm3/h |
Регенеративен термичен окислител; Регенеративен термичен окислител; Регенеративен термичен окислител; Термичен окислител; Термичен окислител; Термичен окислител; окислител,; окислител,; окислител,; инсинератор,; инсинератор,; инсинератор,; обработка на отпадъчни газове; обработка на отпадъчни газове; обработка на отпадъчни газове; Третиране на ЛОС; Третиране на ЛОС; Третиране на ЛОС; RTO,; RTO,; RTO,; Ротационен RTO,; Ротационен RTO,; Ротационен RTO,; Камера RTO,; Камера RTO,; Камера RTO
Адрес: 8 етаж, E1, сграда Pinwei, път Dishengxi, Yizhuang, ZheJiang, Китай
Тип бизнес: производител/фабрика, търговска компания
Бизнес диапазон: Електротехника и електроника, Индустриално оборудване и компоненти, Машини за производство и обработка, Металургия, Минерали и енергия
Сертифициране на системата за управление: ISO 9001, ISO 14001
Основни продукти: Rto, линия за цветно покритие, линия за поцинковане, въздушен нож, резервни части за производствена линия, машина за нанасяне на покритие, независимо оборудване, ролка за мивки, проект за обновяване, вентилатор
Представяне на компанията: ZheJiang Amazing Science & Technology Co., Ltd е процъфтяваща високотехнологична компания, разположена в зоната за икономическо и технологично развитие на ZheJiang (BDA). Придържайки се към концепцията за реалистични, иновативни, фокусирани и ефективни, нашата компания обслужва главно обработката на отпадъчни газове (ЛОС) промишлеността и металургичното оборудване на Китай и дори на целия свят. Разполагаме с напреднали технологии и богат опит в проекта за третиране на отпадъчни газове с летливи органични съединения, чието позоваване е успешно приложено в индустрията за покрития, каучук, електроника, печат и т.н. Също така имаме години натрупване на технологии в изследването и производството на плоски линия за обработка на стомана и притежава близо 100 примера за приложение.
Нашата компания се фокусира върху проучването, проектирането, производството, инсталирането и пускането в експлоатация на система за третиране на органични отпадъчни газове с ЛОС и проект за обновяване и актуализиране на енергоспестяване и опазване на околната среда на линия за обработка на плоска стомана. Ние можем да предоставим на клиентите цялостни решения за опазване на околната среда, енергоспестяване, подобряване на качеството на продуктите и други аспекти.
Ние също така се занимаваме с различни резервни части и независимо оборудване за линия за цветно покритие, линия за поцинковане, линия за ецване, като валяк, съединител, топлообменник, рекуператор, въздушен нож, вентилатор, заварчик, изравнител на опън, кожен проход, разширителна фуга, срязване, фуги , шевна машина, горелка, лъчиста тръба, редуктор, редуктор и др.
What is the difference between a regenerative thermal oxidizer and a thermal oxidizer?
A regenerative thermal oxidizer (RTO) and a thermal oxidizer are both types of air pollution control devices used for the treatment of volatile organic compounds (VOCs) and other air pollutants. While they share the same purpose, there are distinct differences between the two technologies.
Here are the key differences between a regenerative thermal oxidizer and a thermal oxidizer:
- Operating Principle: The fundamental difference lies in the operating principle. A thermal oxidizer operates by using high temperature alone to oxidize and destroy pollutants. It typically relies on a burner or other heat sources to raise the temperature of the exhaust gases to the required level for combustion. In contrast, an RTO utilizes a regenerative heat exchanger system to preheat the incoming exhaust gases by capturing and transferring heat from the outgoing gases. This heat exchange mechanism significantly improves the overall energy efficiency of the system.
- Възстановяване на топлина: Heat recovery is a distinctive feature of an RTO. The regenerative heat exchanger in an RTO allows for the recovery of a significant amount of heat from the outgoing gases. This recovered heat is then used to preheat the incoming gases, reducing the energy consumption of the system. In a typical thermal oxidizer, heat recovery is limited or absent, resulting in higher energy requirements.
- Energy Efficiency: Due to the heat recovery mechanism, RTOs are generally more energy-efficient compared to traditional thermal oxidizers. The regenerative heat exchanger in an RTO allows for thermal efficiencies of 95% or higher, meaning that a significant portion of the energy input is recovered and utilized within the system. Thermal oxidizers, on the other hand, typically have lower thermal efficiencies.
- Operating Costs: The higher energy efficiency of RTOs translates into lower operating costs over the long term. The reduced energy consumption can result in significant savings in fuel or electricity expenses compared to thermal oxidizers. However, the initial capital investment for an RTO is generally higher than that of a thermal oxidizer due to the complexity of the regenerative heat exchanger system.
- Control of Pollutant Concentrations: RTOs are better suited for handling variable pollutant concentrations compared to thermal oxidizers. The regenerative heat exchanger system in an RTO allows for better control and adjustment of operating parameters to accommodate fluctuations in pollutant concentrations. Thermal oxidizers are typically less adaptable to varying pollutant loads.
In summary, the main differences between a regenerative thermal oxidizer and a thermal oxidizer lie in the operating principle, heat recovery capabilities, energy efficiency, operating costs, and control of pollutant concentrations. RTOs offer higher energy efficiency, better control of pollutant concentrations, and lower operating costs, but they require a higher initial investment compared to traditional thermal oxidizers.
What are the typical construction materials used in regenerative thermal oxidizers?
Regenerative thermal oxidizers (RTOs) are constructed using various materials that can withstand the high temperatures, corrosive environments, and mechanical stresses encountered during operation. The choice of materials depends on factors such as the specific design, process conditions, and the types of pollutants being treated. Here are some typical construction materials used in RTOs:
- Heat Exchangers: The heat exchangers in RTOs are responsible for transferring heat from the outgoing exhaust gas to the incoming process air or gas stream. The construction materials for heat exchangers often include:
- Ceramic Media: RTOs commonly use structured ceramic media, such as ceramic monoliths or ceramic saddles. These materials have excellent thermal properties, high resistance to thermal shock, and good chemical resistance. Ceramic media provide a large surface area for efficient heat transfer.
- Metallic Media: Some RTO designs may incorporate metallic heat exchangers made from alloys such as stainless steel or other heat-resistant metals. Metallic media offer robustness and durability, particularly in applications with high mechanical stresses or corrosive environments.
- Combustion Chamber: The combustion chamber of an RTO is where the oxidation of pollutants takes place. The construction materials for the combustion chamber should be able to withstand the high temperatures and corrosive conditions. Commonly used materials include:
- Refractory Lining: RTOs often have refractory lining in the combustion chamber to provide thermal insulation and protection. Refractory materials, such as high-alumina or silicon carbide, are chosen for their high-temperature resistance and chemical stability.
- Steel or Alloys: The structural components of the combustion chamber, such as the walls, roof, and floor, are typically made of steel or heat-resistant alloys. These materials offer strength and stability while withstanding the high temperatures and corrosive gases.
- Ductwork and Piping: The ductwork and piping in an RTO transport the exhaust gas, process air, and auxiliary gases. The materials used for ductwork and piping depend on the specific requirements, but commonly used materials include:
- Mild Steel: Mild steel is often used for ductwork and piping in less corrosive environments. It provides strength and cost-effectiveness.
- Stainless Steel: In applications where corrosion resistance is crucial, stainless steel, such as 304 or 316 grades, may be used. Stainless steel offers excellent resistance to many corrosive gases and environments.
- Corrosion-Resistant Alloys: In highly corrosive environments, corrosion-resistant alloys like Hastelloy or Inconel may be employed. These materials provide exceptional resistance to a wide range of corrosive chemicals and gases.
- Insulation: Insulation materials are used to minimize heat loss from the RTO and ensure energy efficiency. Common insulation materials include:
- Ceramic Fiber: Ceramic fiber insulation offers excellent thermal resistance and low thermal conductivity. It is often used in RTOs to reduce heat loss and improve overall energy efficiency.
- Mineral Wool: Mineral wool insulation provides good thermal insulation and sound absorption properties. It is commonly used in RTOs to reduce heat loss and enhance safety.
It is important to note that the specific materials used in RTO construction may vary depending on factors such as the process requirements, temperature range, and corrosive nature of the gases being treated. Manufacturers of RTOs typically select appropriate materials based on their expertise and the specific application.
How do regenerative thermal oxidizers compare to other air pollution control devices?
Regenerative thermal oxidizers (RTOs) are highly regarded air pollution control devices that offer several advantages over other commonly used air pollution control technologies. Here’s a comparison of RTOs with some other air pollution control devices:
Comparison | Regenerative Thermal Oxidizers (RTOs) | Electrostatic Precipitators (ESPs) | Scrubbers |
---|---|---|---|
Ефективност | RTOs achieve high VOC destruction efficiency, typically exceeding 99%. They are highly effective in destroying volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). | ESPs are effective in collecting particulate matter, such as dust and smoke, but they are less effective in destroying VOCs and HAPs. | Scrubbers are efficient in removing certain pollutants, such as gases and particulate matter, but their performance may vary depending on the specific pollutants being targeted. |
Applicability | RTOs are suitable for a wide range of industries and applications, including high-volume exhaust gases. They can handle varying concentrations and types of pollutants. | ESPs are commonly used for particulate matter control in applications such as power plants, cement kilns, and steel mills. They are less suitable for VOC and HAP control. | Scrubbers are widely used for removing acid gases, such as sulfur dioxide (SO2) and hydrogen chloride (HCl), as well as certain odorous compounds. They are often employed in industries such as chemical manufacturing and wastewater treatment. |
Енергийна ефективност | RTOs incorporate heat recovery systems that allow for significant energy savings. They can achieve high thermal efficiency by preheating the incoming process air using the heat from the outgoing exhaust stream. | ESPs consume relatively low energy compared to other technologies, but they do not offer heat recovery capabilities. | Scrubbers generally consume more energy compared to RTOs and ESPs due to the energy required for liquid atomization and pumping. However, some scrubber designs may incorporate heat recovery mechanisms. |
Space Requirements | RTOs typically require more space compared to ESPs and certain scrubber designs due to the need for ceramic media beds and larger combustion chambers. | ESPs have a compact design and require less space compared to RTOs and some scrubber configurations. | Scrubber designs vary in size and complexity. Certain scrubber types, such as packed bed scrubbers, may require a larger footprint compared to RTOs and ESPs. |
Maintenance | RTOs generally require regular maintenance of components such as valves, dampers, and ceramic media beds. Periodic media replacement may be necessary depending on the operating conditions. | ESPs require periodic cleaning of collection plates and electrodes. Maintenance activities involve the removal of accumulated particulate matter. | Scrubbers require maintenance of liquid circulation systems, pumps, and mist eliminators. Regular monitoring and adjustment of the chemical reagents used in the scrubbing process are also necessary. |
It’s important to note that the selection of an air pollution control device depends on the specific pollutants, process conditions, regulatory requirements, and economic considerations of the industrial application. Each technology has its own advantages and limitations, and it’s essential to evaluate these factors to determine the most appropriate solution for effective air pollution control.
editor by CX 2024-03-26