Basic Info.
Model NO.
RTO
Type
Environmental Monitoring Instrument
Main Function
Waste Gases Removal
Application
Chemical Industry
Brand
Raidsant
Clean Efficeincy
99.8%
Condition
New
Trademark
Raidsant
Transport Package
Film Wrapped
Origin
ZheJiang China
Product Description
HangZhou Raidsant Machinery Co.;,; Ltd.; is majored in developing and manufacturing innovativepowder cooling pelletizing machinery and related industrial waste gas treatment machine.; With nearly 20 years’ production history,; we have a good market in more than 20 provinces in China,; and some of our products were exported to Saudi Arabia,;Singapore,;Mexico,; Brazil,;Spain,; America,; Russia and Korea,; etc.;
Specifications:;
* More compact than the existing facilities
* Low-operation costs
* Long lifespan of facilities
* No changes in pressure
Purpose:;
Energy-saving system that burns volatile organic compound (VOC); and waste gas by using heat,; and it collects over 99.;8% of waste heat of exhaust gas by using ceramic regenerative materials (catalyst); with large surface area and low-pressure loss.;
Applications:;
1.; Painting drying process
2.; metal printing process
3.; fiber drying process
4.; adhesive tape process
5.; waste treatment process
6.; semiconductor manufacturing process
7.; smoke,; confectionary and baking process
8.; petrochemical process,;
9.; medicine and food manufacturing process,;
10.; other VOC generating process
Merits:;
* More compact than the existing facilities
* No changes in pressure
* High-heat recovery rate (over 95%);
* Perfect VOC treatment (over 99.;8%);
* Long lifespan of facilities
* Low-operation costs
* Able to be manufactured in circle or quadrangle
General Descriptions and Features:;
1.; Operating principle
Operation method that continuously changing discharges by rotating the Rotary Valve
2.; Process Pressure Change
No pressure change because wind direction changes in order by the Rotary Valve rotation
3.; Investment Costs
Around 70% of Bed Type
4.; Installation Space
It is single vessel so it is compact and requires less installation space.;
5.; Maintenance
It is easy to maintain it because Rotary Valve is the only 1 moving part.;
Rotary Valve’s sealing part is rarely worn out because it rotates at low speed.;
6.; Stability
No risks in the process because it is always opened even when the Rotary Valve has troubles.;
7.; Treatment Efficiency
Treatment efficiency maintains because sealing part is rarely worn out even if it is operated for a long time.;
Address: No.3,Zhenxin Middle Road, Economic Development Zone,HangZhou,ZheJiang
Business Type: Manufacturer/Factory, Trading Company
Business Range: Chemicals, Electrical & Electronics, Manufacturing & Processing Machinery, Security & Protection
Management System Certification: ISO 9001
Main Products: Pelletizer, Flaker, Pastillator, Granulator, Chemical Pelletizer, Vocs
Company Introduction: HangZhou Raidsant Machinery Co., Ltd. ., previously called HangZhou Xinte Plastic Machinery Factory is majored in producing innovative plastic recycling machinery. With nearly 20 years′ experience, we have a good market in 20 provinces in China, and some of our products were exported to Indonesia, Russia and Vietnam, etc. Our main products include DZ Type Pastillator, waste tire recycling line, Big Calibre Plastic Pipe shredders recycling line, continuous annealing tin-coation machine, QX type PET, PE & hull washing line, SDP double rails plastic recycling crusher, SJ hot cutting granule making unit, PVC tube (cinquefoil) product line, PVC Odd-shaped material product line for door and window, granule product line in water and Shredder for plastics and recycling. We acquired 5 technical patents.
Our corpotation lays emphsis on thchnical reconstruction, imports advanced technology from home and abroad, and develops new products constantly. Our tenet is challenging for hight quality, offering the best products. We are making efforts to realize our slogan. Satisfying our customers is our everlasting pursuit.
We are looking for the oversea customers or agents. If you are interested in our proposal, please let us know which of our products is the most likely to appeal to you or your customers. We should be very grateful if you give us some ideas of the marketprospects for our products. We hope to hear favorable information from you soon! It is our goal that we wish we could buid a good relationship with you now or in the near future. Please do not hesitate to contact us if you have any question or request.
We also sincerely welcome you to our company to discuss business and negotiate with us. For further expanding our market and customers, our company welcomes customer from domestic and aboard in an new-brand gesture on the basis of full-new mangement conception—quality, honour, service. We are looking for ISO 90001 mangement quality system to meet with our customers requirement!
What is the difference between a regenerative thermal oxidizer and a thermal oxidizer?
A regenerative thermal oxidizer (RTO) and a thermal oxidizer are both types of air pollution control devices used for the treatment of volatile organic compounds (VOCs) and other air pollutants. While they share the same purpose, there are distinct differences between the two technologies.
Here are the key differences between a regenerative thermal oxidizer and a thermal oxidizer:
- Operating Principle: The fundamental difference lies in the operating principle. A thermal oxidizer operates by using high temperature alone to oxidize and destroy pollutants. It typically relies on a burner or other heat sources to raise the temperature of the exhaust gases to the required level for combustion. In contrast, an RTO utilizes a regenerative heat exchanger system to preheat the incoming exhaust gases by capturing and transferring heat from the outgoing gases. This heat exchange mechanism significantly improves the overall energy efficiency of the system.
- Heat Recovery: Heat recovery is a distinctive feature of an RTO. The regenerative heat exchanger in an RTO allows for the recovery of a significant amount of heat from the outgoing gases. This recovered heat is then used to preheat the incoming gases, reducing the energy consumption of the system. In a typical thermal oxidizer, heat recovery is limited or absent, resulting in higher energy requirements.
- Energy Efficiency: Due to the heat recovery mechanism, RTOs are generally more energy-efficient compared to traditional thermal oxidizers. The regenerative heat exchanger in an RTO allows for thermal efficiencies of 95% or higher, meaning that a significant portion of the energy input is recovered and utilized within the system. Thermal oxidizers, on the other hand, typically have lower thermal efficiencies.
- Operating Costs: The higher energy efficiency of RTOs translates into lower operating costs over the long term. The reduced energy consumption can result in significant savings in fuel or electricity expenses compared to thermal oxidizers. However, the initial capital investment for an RTO is generally higher than that of a thermal oxidizer due to the complexity of the regenerative heat exchanger system.
- Control of Pollutant Concentrations: RTOs are better suited for handling variable pollutant concentrations compared to thermal oxidizers. The regenerative heat exchanger system in an RTO allows for better control and adjustment of operating parameters to accommodate fluctuations in pollutant concentrations. Thermal oxidizers are typically less adaptable to varying pollutant loads.
In summary, the main differences between a regenerative thermal oxidizer and a thermal oxidizer lie in the operating principle, heat recovery capabilities, energy efficiency, operating costs, and control of pollutant concentrations. RTOs offer higher energy efficiency, better control of pollutant concentrations, and lower operating costs, but they require a higher initial investment compared to traditional thermal oxidizers.
Can regenerative thermal oxidizers be used for treating emissions from pharmaceutical processes?
Yes, regenerative thermal oxidizers (RTOs) can be effectively used for treating emissions from pharmaceutical processes. Pharmaceutical manufacturing processes often generate volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) that need to be controlled to comply with environmental regulations and ensure air quality. Here are some key points regarding the use of RTOs for treating emissions from pharmaceutical processes:
- Emission Control: RTOs are designed to achieve high destruction efficiencies for VOCs and HAPs. These pollutants are oxidized within the RTO at high temperatures, typically above 95% efficiency, converting them into carbon dioxide (CO2) and water vapor. This ensures effective control and reduction of emissions from pharmaceutical processes.
- Process Compatibility: RTOs can be integrated into the exhaust systems of various pharmaceutical processes, capturing and treating the emissions before they are released into the atmosphere. The RTO is typically connected to the process equipment or exhaust stack, allowing the VOC-laden air to pass through the oxidizer for treatment.
- Flexibility: RTOs offer flexibility in handling a wide range of operating conditions and pollutants. Pharmaceutical processes can vary in terms of flow rates, temperature, and composition of emissions. RTOs are designed to accommodate these variations and provide effective treatment even under fluctuating conditions.
- Heat Recovery: RTOs incorporate heat exchange systems that allow for the recovery and reuse of thermal energy. The heat exchangers within the RTO capture the heat from the outgoing exhaust gases and transfer it to the incoming process air or gas stream. This heat recovery process improves the overall energy efficiency of the system and reduces the need for additional fuel consumption.
- Compliance with Regulations: Pharmaceutical processes are subject to regulatory requirements for air quality and emissions control. RTOs are capable of achieving the necessary destruction efficiencies and can help pharmaceutical manufacturers comply with environmental regulations. The use of RTOs demonstrates a commitment to sustainable practices and responsible management of air emissions.
It is important to note that the specific design and configuration of the RTO, as well as the characteristics of the pharmaceutical emissions, should be considered when implementing an RTO for a specific application. Consulting with experienced engineers or RTO manufacturers can provide valuable insights into the proper sizing, integration, and performance requirements for treating emissions from pharmaceutical processes.
In summary, RTOs are a suitable and effective technology for treating emissions from pharmaceutical processes, providing high destruction efficiencies, compatibility with various processes, flexibility in handling operating conditions, heat recovery, and compliance with environmental regulations.
Are regenerative thermal oxidizers environmentally friendly?
Regenerative thermal oxidizers (RTOs) are considered environmentally friendly air pollution control devices due to several reasons:
- High Efficiency in Pollutant Destruction: RTOs are highly efficient in destroying pollutants, including volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). They typically achieve destruction efficiencies exceeding 99%. This means that the vast majority of harmful pollutants are converted into harmless byproducts, such as carbon dioxide and water vapor.
- Compliance with Emission Regulations: RTOs help industries comply with stringent air quality regulations and emission limits set by environmental agencies. By effectively removing pollutants from industrial exhaust streams, RTOs help reduce the release of harmful substances into the atmosphere, contributing to improved air quality.
- Minimal Secondary Pollutant Formation: RTOs minimize the formation of secondary pollutants. The high temperatures within the combustion chamber promote the complete oxidation of pollutants, preventing the formation of uncontrolled byproducts, such as dioxins and furans, which can be more harmful than the original pollutants.
- Energy Efficiency: RTOs incorporate heat recovery systems that improve energy efficiency. They capture and utilize the heat generated during the oxidation process to preheat the incoming process air, reducing the energy requirements for heating. This energy recovery feature helps minimize the overall environmental impact of the system.
- Reduction of Greenhouse Gas Emissions: By effectively destroying VOCs and HAPs, RTOs contribute to the reduction of greenhouse gas emissions. VOCs are significant contributors to the formation of ground-level ozone and are associated with climate change. By eliminating VOC emissions, RTOs help mitigate the environmental impact associated with these pollutants.
- Applicability to Various Industries: RTOs are widely applicable across different industries and processes. They can handle a wide range of exhaust volumes, pollutant concentrations, and variations in gas composition, making them versatile and adaptable to various industrial applications.
While RTOs offer significant environmental benefits, it’s important to note that their overall environmental performance depends on proper design, operation, and maintenance. Regular inspections, maintenance, and adherence to manufacturer’s guidelines are crucial to ensuring the continued effectiveness and environmental friendliness of RTOs.
editor by CX 2024-02-23